Skip to main content

Real-Time Hand Pose Estimation Using Depth Camera

  • Chapter
  • First Online:
RGB-D Image Analysis and Processing

Abstract

In recent years, we have witnessed a steady growth of the research in real-time 3D hand pose estimation with depth cameras, since this technology plays an important role in various human–computer interaction applications. In this chapter, we first review existing techniques and systems for real-time 3D hand pose estimation. Then, we will discuss two point-set-based methods for 3D hand pose estimation from depth images: (1) point-set-based holistic regression method that directly regresses holistic 3D hand pose; (2) point-set-based point-wise regression method that generates dense outputs for robust 3D hand pose estimation. Extensive experiments are conducted to evaluate the effectiveness of these two methods. We will also discuss the limitations and advantages of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcover EA, Jaume-i CapĂł A, MoyĂ -Alcover B (2018) PROGame: a process framework for serious game development for motor rehabilitation therapy. PloS one 13(5)

    Google Scholar 

  2. Ayed I, Ghazel A, Jaume-i CapĂł A, Moya-Alcover G, Varona J, MartĂ­nez-Bueso P (2018) Feasibility of Kinect-based games for balance rehabilitation: A case study. J Healthc Eng

    Google Scholar 

  3. Chen X, Wang G, Guo H, Zhang C (2017) Pose guided structured region ensemble network for cascaded hand pose estimation. CoRR. https://arxiv.org/abs/1708.03416

  4. Choi C, Kim S, Ramani K (2017) Learning hand articulations by hallucinating heat distribution. In: Proceedings of international conference on computer vision, pp 3104–3113

    Google Scholar 

  5. Choi C, Sinha A, Hee Choi J, Jang S, Ramani K (2015) A collaborative filtering approach to real-time hand pose estimation. In: Proceedings of international conference on computer vision, pp 2336–2344

    Google Scholar 

  6. Dollár P, Welinder P, Perona P (2010) Cascaded pose regression. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1078–1085

    Google Scholar 

  7. Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly X (2005) A review on vision-based full DOF hand motion estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Workshops, pp 75–82

    Google Scholar 

  8. Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly X (2007) Vision-based hand pose estimation: a review. Comput Vis Image Underst 108(1):52–73

    Article  Google Scholar 

  9. Ge L, Liang H, Yuan J, Thalmann D (2016) Robust 3D hand pose estimation in single depth images: from single-view CNN to multi-view CNNs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3593–3601

    Google Scholar 

  10. Ge L, Liang H, Yuan J, Thalmann D (2017) 3D convolutional neural networks for efficient and robust hand pose estimation from single depth images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1991–2000

    Google Scholar 

  11. Ge L, Liang H, Yuan J, Thalmann D (2018) Real-time 3D hand pose estimation with 3D convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 1–15. https://doi.org/10.1109/TPAMI.2018.2827052

    Article  Google Scholar 

  12. Guo H, Wang G, Chen X, Zhang C, Qiao F, Yang H (2017) Region ensemble network: improving convolutional network for hand pose estimation. In: Proceedings international conference on image processing

    Google Scholar 

  13. Hoppe H, DeRose T, Duchamp T, Mcdonald J, Stuetzle W (1992) Surface reconstruction from unorganized points. Comput Graph 26(2):71–78

    Article  Google Scholar 

  14. Joo H, Simon T, Sheikh Y (2018) Total capture: A 3D deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8320–8329

    Google Scholar 

  15. Keskin C, Kıraç F, Kara YE, Akarun L (2012) Hand pose estimation and hand shape classification using multi-layered randomized decision forests. In: Proceedings european conference on computer vision, pp 852–863

    Google Scholar 

  16. Khamis S, Taylor J, Shotton J, Keskin C, Izadi S, Fitzgibbon A (2015) Learning an efficient model of hand shape variation from depth images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2540–2548

    Google Scholar 

  17. Kirac F, Kara YE, Akarun L (2014) Hierarchically constrained 3D hand pose estimation using regression forests from single frame depth data. Pattern Recognit Lett 50:91–100

    Article  Google Scholar 

  18. Li P, Ling H, Li X, Liao C (2015) 3D hand pose estimation using randomized decision forest with segmentation index points. In: Proceedings of international conference on computer vision, pp 819–827

    Google Scholar 

  19. Liang H, Yuan J, Thalmann D (2014) Parsing the hand in depth images. IEEE Trans Multimed 16(5):1241–1253

    Article  Google Scholar 

  20. Liang H, Yuan J, Thalmann D (2015) Resolving ambiguous hand pose predictions by exploiting part correlations. IEEE Trans Circuits Syst Video Technol 25(7):1125–1139

    Google Scholar 

  21. Melax S, Keselman L, Orsten S (2013) Dynamics based 3D skeletal hand tracking. In: Proceedings of graphics interface, pp 63–70

    Google Scholar 

  22. Moon G, Chang JY, Lee KM (2018) V2V-PoseNet: Voxel-to-voxel prediction network for accurate 3D hand and human pose estimation from a single depth map. In: Proceedings of the IEEE conference on computer vision and pattern Recognition, pp 5079–5088

    Google Scholar 

  23. Newell A, Yang K, Deng J (2016) Stacked hourglass networks for human pose estimation. In: proceedings of the European conference on computer vision, pp 483–499

    Google Scholar 

  24. Oberweger M, Lepetit V (2017) DeepPrior++: improving fast and accurate 3D hand pose estimation. In: Proceedings of international conference on computer vision. Workshop, pp 585–594

    Google Scholar 

  25. Oberweger M, Riegler G, Wohlhart P, Lepetit V (2016) Efficiently creating 3D training data for fine hand pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3593–3601

    Google Scholar 

  26. Oberweger M, Wohlhart P, Lepetit V (2015) Hands deep in deep learning for hand pose estimation. In: Proceedings of the computer vision. Winter Workshop, pp 21–30

    Google Scholar 

  27. Oberweger M, Wohlhart P, Lepetit V (2015) Training a feedback loop for hand pose estimation. In: Proceedings of the international conference computer vision, pp 3316–3324

    Google Scholar 

  28. Oikonomidis I, Kyriazis N, Argyros A (2011) Efficient model-based 3D tracking of hand articulations using Kinect. In: Proceedings of the British machine computer vision, pp 101.1–101.11

    Google Scholar 

  29. Oikonomidis I, Kyriazis N, Argyros AA (2010) Markerless and efficient 26-DOF hand pose recovery. In: Proceedings of the Asian conference on compute vision, pp 744–757. Springer

    Google Scholar 

  30. Pavlakos G, Zhou X, Derpanis KG, Daniilidis K (2017) Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 7025–7034

    Google Scholar 

  31. Pavlovic VI, Sharma R, Huang TS (1997) Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7):677–695

    Article  Google Scholar 

  32. Qi CR, Su H, Mo K, Guibas, LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 652–660

    Google Scholar 

  33. Qi CR, Yi L, Su H, Guibas LJ (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the conference neural information processing systems

    Google Scholar 

  34. Qian C, Sun X, Wei Y, Tang X, Sun J (2014) Realtime and robust hand tracking from depth. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition, pp 1106–1113

    Google Scholar 

  35. Quam DL (1990) Gesture recognition with a dataglove. Proc. IEEE Conf. Aerosp. Electron. 2:755–760

    Article  Google Scholar 

  36. Rad M, Oberweger M, Lepetit V (2018) Feature mapping for learning fast and accurate 3D pose inference from synthetic images. In: Proceedings of the ieee conference computer vision pattern recognition, pp 4663–4672

    Google Scholar 

  37. Rogez G, Weinzaepfel P, Schmid C (2017) LCR-net: localization-classification-regression for human pose. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 3433–3441

    Google Scholar 

  38. Romero J, Kjellström H, Kragic D (2009) Monocular real-time 3D articulated hand pose estimation. In: Proceedings of the IEEE-RAS conference humanoid robots, pp 87–92

    Google Scholar 

  39. Romero J, Kjellström H, Kragic D (2010) Hands in action: real-time 3D reconstruction of hands in interaction with objects. In: Proceedings IEEE Conference Robotics and Automation, pp 458–463

    Google Scholar 

  40. Romero J, Tzionas D, Black MJ (2017) Embodied hands: modeling and capturing hands and bodies together. ACM Trans Graph 36(6):245:1–245:17

    Article  Google Scholar 

  41. Shakhnarovich G, Viola P, Darrell T (2003) Fast pose estimation with parameter-sensitive hashing. In: Proceedings of the International Conference Computer Vision, pp 750–758

    Google Scholar 

  42. Sharp T, Keskin C, Robertson D, Taylor J, Shotton J, Kim D, Rhemann C, Leichter I, Vinnikov A, Wei Y, Freedman D, Kohli P, Krupka E, Fitzgibbon A, Izadi S (2015) Accurate, robust, and flexible real-time hand tracking. In: Proceedings of the 33rd annual ACM conference human factors in computing systems, pp 3633–3642

    Google Scholar 

  43. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from a single depth image. In: Proceedings IEEE conference computer vision pattern recognition, pp 1297–1304

    Google Scholar 

  44. Sinha A, Choi C, Ramani K (2016) Deephand: Robust hand pose estimation by completing a matrix with deep features. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition, pp 4150–4158

    Google Scholar 

  45. Sridhar S, Mueller F, Oulasvirta A, Theobalt C (2015) Fast and robust hand tracking using detection-guided optimization. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 3213–3221

    Google Scholar 

  46. Sridhar S, Mueller F, Zollhoefer M, Casas D, Oulasvirta A, Theobalt C (2016) Real-time joint tracking of a hand manipulating an object from RGB-D input. In: Proceedings of the European conference computer vision, pp 294–310

    Chapter  Google Scholar 

  47. Sun X, Wei Y, Liang S, Tang X, Sun J (2015) Cascaded hand pose regression. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 824–832

    Google Scholar 

  48. Supancic III JS, Rogez G, Yang Y, Shotton J, Ramanan D (2015) Depth-based hand pose estimation: methods, data, and challenges. In: Proceedings international conference computer vision, pp 1868–1876

    Google Scholar 

  49. Tagliasacchi A, Schroeder M, Tkach A, Bouaziz S, Botsch M, Pauly M (2015) Robust articulated-ICP for real-time hand tracking. Comput Graph Forum 34(5):101–114

    Article  Google Scholar 

  50. Tang D, Chang HJ, Tejani A, Kim TK (2014) Latent regression forest: structured estimation of 3D articulated hand posture. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 3786–3793

    Google Scholar 

  51. Tang D, Taylor J, Kohli P, Keskin C, Kim TK, Shotton J (2015) Opening the black box: hierarchical sampling optimization for estimating human hand pose. In: Proceedings of the international conference computer vision, pp 3325–3333

    Google Scholar 

  52. Tang D, Yu TH, Kim TK (2013) Real-time articulated hand pose estimation using semi-supervised transductive regression forests. In: Proceedings of the international conference computer vision, pp 3224–3231

    Google Scholar 

  53. Taylor J, Bordeaux L, Cashman T, Corish B, Keskin C, Sharp T, Soto E, Sweeney D, Valentin J, Luff B, Topalian A, Wood E, Khamis S, Kohli P, Izadi S, Banks R, Fitzgibbon A, Shotton J (2016) Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Trans Graph 35(4):143:1–143:12

    Article  Google Scholar 

  54. Taylor J, Shotton J, Sharp T, Fitzgibbon A (2012) The Vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 103–110

    Google Scholar 

  55. Tkach A, Pauly M, Tagliasacchi A (2016) Sphere-meshes for real-time hand modeling and tracking. ACM Trans Graph 35(6):222:1–222:11

    Article  Google Scholar 

  56. Tome D, Russell C, Agapito L (2017) Lifting from the deep: Convolutional 3D pose estimation from a single image. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 2500–2509

    Google Scholar 

  57. Tompson J, Jain A, LeCun Y, Bregler C (2014) Joint training of a convolutional network and a graphical model for human pose estimation. In: Proceedings neural information processing systems, pp 1799–1807

    Google Scholar 

  58. Tompson J, Stein M, Lecun Y, Perlin K (2014) Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans Graph 33(5):169:1–169:10

    Article  Google Scholar 

  59. Tzionas D, Ballan L, Srikantha A, Aponte P, Pollefeys M, Gall J (2016) Capturing hands in action using discriminative salient points and physics simulation. Int J Comput Vis 118(2):172–193

    Article  MathSciNet  Google Scholar 

  60. Verth JMV, Bishop LM (2008) Essential mathematics for games and interactive applications, Second Edition: A Programmer’s Guide, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA

    Google Scholar 

  61. Wan C, Probst T, Van Gool L, Yao A (2017) Crossing nets: dual generative models with a shared latent space for hand pose estimation. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 680–689

    Google Scholar 

  62. Wan C, Probst T, Van Gool L, Yao A (2018) Dense 3D regression for hand pose estimation. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 5147–5156

    Google Scholar 

  63. Wan C, Yao A, Van Gool L (2016) Direction matters: hand pose estimation from local surface normals. In: Proceedings of the European conference computer vision, pp 554–569

    Chapter  Google Scholar 

  64. Wang C, Cannon DJ (1993) A virtual end-effector pointing system in point-and-direct robotics for inspection of surface flaws using a neural network based skeleton transform. Proc Int Conf Robot Autom 3:784–789

    Google Scholar 

  65. Wei SE, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolutional pose machines. In: Proceedings IEEE conference computer vision pattern recognition, pp 4724–4732

    Google Scholar 

  66. Wu Y, Huang TS (1999) Vision-based gesture recognition: a review. In: International Gesture Workshop, pp 103–115

    Chapter  Google Scholar 

  67. Wu Y, Huang TS (2001) Hand modeling, analysis and recognition. IEEE Signal Process Mag 18(3):51–60

    Article  Google Scholar 

  68. Xu C, Cheng L (2013) Efficient hand pose estimation from a single depth image. In: Proceedings of the international conference computer vision, pp 3456 – 3462

    Google Scholar 

  69. Xu C, Govindarajan LN, Zhang Y, Cheng L (2016) Lie-X: depth image based articulated object pose estimation, tracking, and action recognition on lie groups. Int J Comput Vis 454–478

    Article  MathSciNet  Google Scholar 

  70. Ye M, Shen Y, Du C, Pan Z, Yang R (2016) Real-time simultaneous pose and shape estimation for articulated objects using a single depth camera. IEEE Trans Pattern Anal Mach Intell 38(8):1517–1532

    Article  Google Scholar 

  71. Ye Q, Yuan S, Kim TK (2016) Spatial attention deep net with partial PSO for hierarchical hybrid hand pose estimation. In: Proceedings European conference computer vision, pp 346–361

    Chapter  Google Scholar 

  72. Yuan S, Garcia-Hernando G, Stenger B, Moon G, Chang JY, Lee KM, Molchanov P, Kautz J, Honari S, Ge L, Yuan J, Chen X, Wang G, Yang F, Akiyama K, Wu Y, Wan Q, Madadi M, Escalera S, Li S, Lee D, Oikonomidis I, Argyros A, Kim TK (2018) Depth-based 3D hand pose estimation: from current achievements to future goals. In: Proceedings of the IEEE conference computer vision pattern recognition, pp 2636–2645

    Google Scholar 

  73. Yuan S, Ye Q, Stenger B, Jain S, Kim TK (2017) Bighand2. 2m benchmark: Hand pose dataset and state of the art analysis. In: Proceedings IEEE conference computer vision pattern recognition, pp 2605–2613

    Google Scholar 

  74. Zhou X, Wan Q, Zhang W, Xue X, Wei Y (2016) Model-based deep hand pose estimation. In: Proceedings of the international joint conference artificial intelligence, pp 2421–2427

    Google Scholar 

  75. Zollhöfer M, Nießner M, Izadi S, Rehmann C, Zach C, Fisher M, Wu C, Fitzgibbon A, Loop C, Theobalt C et al (2014) Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans Graph (TOG) 33(4):156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsong Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, L., Yuan, J., Magnenat Thalmann, N. (2019). Real-Time Hand Pose Estimation Using Depth Camera. In: Rosin, P., Lai, YK., Shao, L., Liu, Y. (eds) RGB-D Image Analysis and Processing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-28603-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28603-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28602-6

  • Online ISBN: 978-3-030-28603-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics