Skip to main content

Commodity RGB-D Sensors: Data Acquisition

  • Chapter
  • First Online:
RGB-D Image Analysis and Processing

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Over the past 10 years, we have seen a democratization of range sensing technology. While previously range sensors have been highly expensive and only accessible to a few domain experts, such sensors are nowadays ubiquitous and can even be found in the latest generation of mobile devices, e.g., current smartphones. This democratization of range sensing technology was started with the release of the Microsoft Kinect, and since then many different commodity range sensors followed its lead, such as the Primesense Carmine, Asus Xtion Pro, and the Structure Sensor from Occipital. The availability of cheap range sensing technology led to a big leap in research, especially in the context of more powerful static and dynamic reconstruction techniques, starting from 3D scanning applications, such as KinectFusion, to highly accurate face and body tracking approaches. In this chapter, we have a detailed look into the different types of existing range sensors. We discuss the two fundamental types of commodity range sensing techniques in detail, namely passive and active sensing, and we explore the principles these technologies are based on. Our focus is on modern active commodity range sensors based on time of flight and structured light. We conclude by discussing the noise characteristics, working ranges, and  types of errors made by the different sensing modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belhedi A, Bartoli A, Bourgeois S, Gay-Bellile V, Hamrouni K, Sayd P (2015) Noise modelling in time-of-flight sensors with application to depth noise removal and uncertainty estimation in three-dimensional measurement. IET Comput Vis 9(6):967–977

    Article  Google Scholar 

  2. Bier A, Luchowski L (2009) Error analysis of stereo calibration and reconstruction. In: Gagalowicz A, Philips W (eds) Computer vision/computer graphics collaboration techniques. Springer, Berlin, pp 230–241

    Chapter  Google Scholar 

  3. Bradski G, Kaehler A (2013) Learning OpenCV: computer vision in C++ with the OpenCV Library, 2nd edn. O’Reilly Media, Inc, Sebastopol (2013)

    Google Scholar 

  4. Cruz L, Lucio D, Velho L (2012) Kinect and RGBD images: challenges and applications. In: Proceedings of the 2012 25th SIBGRAPI conference on graphics, patterns and images tutorials, SIBGRAPI-T ’12, pp. 36–49. IEEE Computer Society, Washington, DC (2012). https://doi.org/10.1109/SIBGRAPI-T.2012.13

  5. Foix S, Alenya G, Torras C (2011) Lock-in time-of-flight (ToF) cameras: a survey. IEEE Sens J 11(9):1917–1926. https://doi.org/10.1109/JSEN.2010.2101060

    Article  Google Scholar 

  6. Forsyth DA, Ponce J (2002) Computer vision: a modern approach. Prentice Hall Professional Technical Reference (2002)

    Google Scholar 

  7. Hartley R, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, New York

    MATH  Google Scholar 

  8. Huhle B, Jenke P, Straßer W (2008) On-the-fly scene acquisition with a handy multi-sensor system. IJISTA 5(3/4):255–263

    Article  Google Scholar 

  9. Lindner M, Kolb A, Hartmann K (2007) Data-fusion of PMD-based distance-information and high-resolution RGB-images. In: International symposium on signals, circuits and systems, vol 1, pp 1–4. https://doi.org/10.1109/ISSCS.2007.4292666

  10. Magnor M, Grau O, Sorkine-Hornung O, Theobalt C (eds.) (2015) Digital representations of the real world: how to capture, model, and render visual reality. A K Peters/CRC Press, Massachusetts

    MATH  Google Scholar 

  11. Mallick T, Das PP, Majumdar AK (2014) Characterizations of noise in kinect depth images: a review. IEEE Sens J 14(6):1731–1740. https://doi.org/10.1109/JSEN.2014.2309987

    Article  Google Scholar 

  12. Nguyen CV, Izadi S, Lovell D (2012) Modeling kinect sensor noise for improved 3D reconstruction and tracking. In: Proceedings of the 2012 second international conference on 3D imaging, modeling, processing, visualization and transmission, 3DIMPVT ’12, pp. 524–530. IEEE Computer Society, Washington, DC (2012). https://doi.org/10.1109/3DIMPVT.2012.84

  13. Sarbolandi H, Lefloch D, Kolb A (2015) Kinect range sensing: structured-light versus time-of-flight kinect. Comput Vis Image Underst 139:1–20. https://doi.org/10.1016/j.cviu.2015.05.006

    Article  Google Scholar 

  14. Saty TP, Gupta RK (2007) Model and algorithms for point cloud construction using digital projection patterns

    Google Scholar 

  15. Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition, CVPR ’06, vol 1, pp 519–528. IEEE Computer Society, Washington, DC (2006). https://doi.org/10.1109/CVPR.2006.19

  16. Sturm P, Ramalingam S, Tardif JP, Gasparini S, Barreto JA (2011) Camera models and fundamental concepts used in geometric computer vision. Found Trends Comput Graph Vis 6(1-2), 1–183. https://doi.org/10.1561/0600000023

    Article  Google Scholar 

  17. Tippetts B, Lee DJ, Lillywhite K, Archibald J (2016) Review of stereo vision algorithms and their suitability for resource-limited systems. J Real-Time Image Process 11(1):5–25. https://doi.org/10.1007/s11554-012-0313-2

    Article  Google Scholar 

  18. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. https://doi.org/10.1109/34.888718

    Article  Google Scholar 

  19. Zollhöfer M, Nießner M, Izadi S, Rehmann C, Zach C, Fisher M, Wu C, Fitzgibbon A, Loop C, Theobalt C, Stamminger M (2014) Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans Graph 33(4), 156:1–156:12. https://doi.org/10.1145/2601097.2601165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zollhöfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zollhöfer, M. (2019). Commodity RGB-D Sensors: Data Acquisition. In: Rosin, P., Lai, YK., Shao, L., Liu, Y. (eds) RGB-D Image Analysis and Processing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-28603-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28603-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28602-6

  • Online ISBN: 978-3-030-28603-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics