Skip to main content

Anatomy, Physiology and Pharmacology of the Lower Urinary Tract

  • Chapter
  • First Online:
Urologic Principles and Practice

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

  • 1481 Accesses

Abstract

The bladder and urethra constitute a functional unit controlled by a complex interplay between the central and peripheral nervous systems and local regulatory factors. Peripherally, lower urinary tract function is dependent on the coordinated action of the smooth and striated muscles of the urinary bladder, urethra, and periurethral region. Various neurotransmitters, including acetylcholine, noradrenaline, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in this neural regulation, which in the adult is controlled by a spinobulbospinal reflex, which is under suprapontine control. In the present review the relevant anatomy, innervation and receptor functions in the bladder and urethra are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev. 2004;84(3):935–86.

    Article  CAS  PubMed  Google Scholar 

  2. de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5(1):327–96.

    PubMed  PubMed Central  Google Scholar 

  3. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453–66. https://doi.org/10.1038/nrn2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elbadawi A. Functional anatomy of the organs of micturition. Urol Clin North Am. 1996;23(2):177–210.

    Article  CAS  PubMed  Google Scholar 

  5. Shah AP, Mevcha A, Wilby D, Alatsatianos A, Hardman JC, Jacques S, Wilton JC. Continence and micturition: an anatomical basis. Clin Anat. 2014;27(8):1275–83.

    Article  PubMed  Google Scholar 

  6. de Groat WC, Yoshimura N. Anatomy and physiology of the lower urinary tract. Handb Clin Neurol. 2015;130:61–108.

    Article  PubMed  Google Scholar 

  7. Standring S. Gray’s anatomy. 41st ed. Amsterdam: Elsevier; 2016.

    Google Scholar 

  8. Birder L, Andersson KE. Urothelial signaling. Physiol Rev. 2013;93(2):653–80. https://doi.org/10.1152/physrev.00030.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Apodaca G. The uroepithelium: not just a passive barrier. Traffic. 2004;5(3):117–28.

    Article  CAS  PubMed  Google Scholar 

  10. Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol. 2009;297(6):F1477–501. https://doi.org/10.1152/ajprenal.00327.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klingler CH. Glycosaminoglycans: how much do we know about their role in the bladder? Urologia. 2016;83(Suppl 1):11–4.

    Article  PubMed  Google Scholar 

  12. Andersson KE, McCloskey KD. Lamina propria: the functional center of the bladder? Neurourol Urodyn. 2014;33(1):9–16. https://doi.org/10.1002/nau.22465.

    Article  PubMed  Google Scholar 

  13. Andersson KE, Boedtkjer DB, Forman A. The link between vascular dysfunction, bladder ischemia, and aging bladder dysfunction. Ther Adv Urol. 2017;9(1):11–27.

    Article  CAS  PubMed  Google Scholar 

  14. McCloskey KD. Bladder interstitial cells: an updated review of current knowledge. Acta Physiol (Oxf). 2013;207(1):7–15.

    Article  CAS  Google Scholar 

  15. Smet PJ, Moore KH, Jonavicius J. Distribution and colocalization of calcitonin gene-related peptide, tachykinins, and vasoactive intestinal peptide in normal and idiopathic unstable human urinary bladder. Lab Invest. 1997;77(1):37–49.

    CAS  PubMed  Google Scholar 

  16. Sultana J, Khalil M, Sultana SZ, Mannan S, Choudhury S, Ara A, Sumi MS, Farzana T, Sultana R, Tania AH. Variations of thickness of trigonal muscle layer in different age and sex. Mymensingh Med J. 2014;23(4):672–5.

    CAS  PubMed  Google Scholar 

  17. Matsumoto K, Soh S, Satoh T, Iwamura M, Ishikawa Y, Ishii T, Baba S. Distribution of lymphatic vessel network in normal urinary bladder. Urology. 2008;72(3):706–10.

    Article  PubMed  Google Scholar 

  18. Ashton-Miller JA, DeLancey JO. Functional anatomy of the female pelvic floor. Ann N Y Acad Sci. 2007;1101:266–96.

    Article  PubMed  Google Scholar 

  19. Wallner C, Dabhoiwala NF, DeRuiter MC, Lamers WH. The anatomical components of urinary continence. Eur Urol. 2009;55(4):932–43.

    Article  PubMed  Google Scholar 

  20. Jung J, Ahn HK, Huh Y. Clinical and functional anatomy of the urethral sphincter. Int Neurourol J. 2012;16(3):102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yucel S, Baskin LS. An anatomical description of the male and female urethral sphincter complex. J Urol. 2004;171(5):1890–7.

    Article  PubMed  Google Scholar 

  22. Macura KJ, Genadry RR. Female urinary incontinence: pathophysiology, methods of evaluation and role of MR imaging. Abdom Imaging. 2008;33(3):371–80.

    Article  PubMed  Google Scholar 

  23. Sebe P, Fritsch H, Oswald J, Schwentner C, Lunacek A, Bartsch G, Radmayr C. Fetal development of the female external urinary sphincter complex: an anatomical and histological study. J Urol. 2005;173(5):1738–42.

    Article  PubMed  Google Scholar 

  24. Andersson K. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev. 1993;45:253–308.

    Google Scholar 

  25. Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev. 2004;56(4):581–631.

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences. Acta Physiol (Oxf). 2013;207:93–109.

    Article  CAS  Google Scholar 

  27. Arya NG, Weissbart SJ. Central control of micturition in women: Brain-bladder pathways in continence and urgency urinary incontinence. Clin Anat. 2017;30(3):373–84.

    Article  PubMed  Google Scholar 

  28. de Groat WC, Boot AM, Yoshimura N. Neurophysiology of micturition and its modification in animal models of human diseases. In: Maggi CA, editor. Nervous control of the urogenital system, vol. 3. London: Harwood Publishers; 1993. p. 227–90.

    Google Scholar 

  29. Lincoln JBG. Autonomic innervation of the urinary bladder and urethra. In: Maggi CA, editor. Nervous control of the urogenital system, vol. 3. London: Harwood Academic Publishers; 1993. p. 33–68.

    Google Scholar 

  30. Andersson KE, Persson K. Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scand J Urol Nephrol Suppl. 1995a;175:43–53.

    CAS  PubMed  Google Scholar 

  31. Bridgewater M, MacNeil HF, Brading AF. Regulation of tone in pig urethral smooth muscle. J Urol. 1993;150(1):223–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hashimoto S, Kigoshi S, Muramatsu I. Nitric oxide-dependent and -independent neurogenic relaxation of isolated dog urethra. Eur J Pharmacol. 1993;231(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  33. Werkström V, Persson K, Ny L, Bridgewater M, Brading AF, Andersson KE. Factors involved in the relaxation of female pig urethra evoked by electrical field stimulation. Br J Pharmacol. 1995;116(1):1599–604.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gosling JA, Dixon JS, Lendon RG. The autonomic innervation of the human male and female bladder neck and proximal urethra. J Urol. 1977a;118(2):302–5.

    Article  CAS  PubMed  Google Scholar 

  35. Ek A, Alm P, Andersson KE, Persson CG. Adrenergic and cholinergic nerves of the human urethra and urinary bladder. A histochemical study. Acta Physiol Scand. 1977;99(3):345–52.

    Article  CAS  PubMed  Google Scholar 

  36. Alm P, Zygmunt PK, Iselin C, Larsson B, Uvelius B, Werner S, Andersson KE. Nitric oxide synthase-immunoreactive, adrenergic, cholinergic, and peptidergic nerves of the female rat urinary tract: a comparative study. J Auton Nerv Syst. 1995;56(1-2):105–14.

    Article  CAS  PubMed  Google Scholar 

  37. Persson K, Johansson K, Alm P, Larsson B, Andersson KE. Morphological and functional evidence against a sensory and sympathetic origin of nitric oxide synthase-containing nerves in the rat lower urinary tract. Neuroscience. 1997a;77(1):271–81.

    Article  CAS  PubMed  Google Scholar 

  38. Beckel JM, Holstege G. Neuroanatomy of the lower urinary tract. Handb Exp Pharmacol. 2011a;202:99–116.

    Article  CAS  Google Scholar 

  39. Elbadawi A, Atta MA. Ultrastructural analysis of vesicourethral innervation: evidence for somatomotor plus autonomic innervation of the feline rhabdosphincter. Neurourol Urodyn. 1985;4:23–36.

    Article  Google Scholar 

  40. Yoshimura N, De Groat WC. Neural control of the lower urinary tract. Int J Urol. 1997a;4:111–25.

    Article  CAS  PubMed  Google Scholar 

  41. Beckel JM, Holstege G. Neurophysiology of the lower urinary tract. Handb Exp Pharmacol. 2011b;202:149–69.

    Article  CAS  Google Scholar 

  42. Kanai A, Andersson KE. Bladder afferent signaling: recent findings. J Urol. 2010;183(4):1288–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Janig W, Morrison JFB. Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. In: Cervero F, JFB M, editors. Visceral sensation. Progress in brain research, vol. 67. Amsterdam: Elsevier; 1986. p. 87–114.

    Chapter  Google Scholar 

  44. Rong W, Spyer KM, Burnstock G. Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol. 2002;541(Pt 2):591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fall M, Lindström S, Mazières L. A bladder-to-bladder cooling reflex in the cat. J Physiol. 1990;427:281–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Häbler HJ, Jänig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol. 1990;425:545–62.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yoshida M, Masunaga K, Satoji Y, Maeda Y, Nagata T, Inadome A. Basic and clinical aspects of non-neuronal acetylcholine: expression of non-neuronal acetylcholine in urothelium and its clinical significance. J Pharmacol Sci. 2008;106(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  48. Arvidsson U, Riedl M, Elde R, Meister B. Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol. 1997;378:454–67.

    Article  CAS  PubMed  Google Scholar 

  49. Persson K, Alm P, Uvelius B, Andersson KE. Nitrergic and cholinergic innervation of the rat lower urinary tract after pelvic ganglionectomy. Am J Physiol. 1998a;274(2 Pt 2):R389–97.

    CAS  PubMed  Google Scholar 

  50. Dixon JS, Jen PY, Gosling JA. The distribution of vesicular acetylcholine transporter in the human male genitourinary organs and its co-localization with neuropeptide Y and nitric oxide synthase. NeurourolUrodyn. 2000;19:185–94.

    CAS  Google Scholar 

  51. Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50(2):279–90.

    CAS  PubMed  Google Scholar 

  52. Andersson KE. Muscarinic acetylcholine receptors in the urinary tract. Handb Exp Pharmacol. 2011;202:319–44.

    Article  CAS  Google Scholar 

  53. Sigala S, Mirabella G, Peroni A, Pezzotti G, Simeone C, Spano P, Cunico SC. Differential gene expression of cholinergic muscarinic receptor subtypes in male and female normal human urinary bladder. Urology. 2002;60(4):719–25.

    Article  PubMed  Google Scholar 

  54. Yamaguchi O, Shishido K, Tamura K, Ogawa T, Fujimura T, Ohtsuka M. Evaluation of mRNAs encoding muscarinic receptor subtypes in human detrusor muscle. J Urol. 1996;156(3):1208–13.

    Article  CAS  PubMed  Google Scholar 

  55. Eglen RM, Hegde SS, Watson N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev. 1996;48(4):531–65.

    CAS  PubMed  Google Scholar 

  56. Hegde SS, Eglen RM. Muscarinic receptor subtypes modulating smooth muscle contractility in the urinary bladder. Life Sci. 1999;64(6-7):419–28.

    Article  CAS  PubMed  Google Scholar 

  57. Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol. 2002;22(3):133–45.

    Article  CAS  PubMed  Google Scholar 

  58. Andersson KE, Holmquist F, Fovaeus M, Hedlund H, Sundler R. Muscarinic receptor stimulation of phosphoinositide hydrolysis in the human isolated urinary bladder. J Urol. 1991;146(4):1156–9.

    Article  CAS  PubMed  Google Scholar 

  59. Harriss DR, Marsh KA, Birmingham AT, Hill SJ. Expression of muscarinic M3-receptors coupled to inositol phospholipid hydrolysis in human detrusor cultured smooth muscle cells. J Urol. 1995;154(3):1241–5.

    Article  CAS  PubMed  Google Scholar 

  60. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol. 1997;120(8):1409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kotlikoff MI, Dhulipala P, Wang YX. M2 signaling in smooth muscle cells. Life Sci. 1999;64(6–7):437–42.

    Article  CAS  PubMed  Google Scholar 

  62. Bonev AD, Nelson MT. Muscarinic inhibition of ATP-sensitive K+ channels by protein kinase C in urinary bladder smooth muscle. Am J Physiol. 1993;265(6 Pt 1):C1623–8.

    Google Scholar 

  63. Nakamura T, Kimura J, Yamaguchi O. Muscarinic M2 receptors inhibit Ca2+-activated K+ channels in rat bladder smooth muscle. Int J Urol. 1993;9(12):689–96.

    Article  Google Scholar 

  64. Tobin G, Sjogren C. In vivo and in vitro effects of muscarinic receptor antagonists on contractions and release of [3 H]acetylcholine in the rabbit urinary bladder. Eur J Pharmacol. 1995;281:1–8.

    Article  CAS  PubMed  Google Scholar 

  65. Inadome A, Yoshida M, Takahashi W, Yono M, Seshita H, Miyamoto Y, Kawano T, Ueda S. Prejunctional muscarinic receptors modulating acetylcholine release in rabbit detrusor smooth muscles. Urol Int. 1998;61(3):135–41.

    Article  CAS  PubMed  Google Scholar 

  66. Somogyi GT, de Groat WC. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder. J Auton Nerv Syst. 1992;37(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  67. Alberts P. Classification of the presynaptic muscarinic receptor subtype that regulates 3Hacetylcholine secretion in the guinea pig urinary bladder in vitro. J Pharmacol Exp Ther. 1995;274(1):458–68.

    CAS  PubMed  Google Scholar 

  68. D’Agostino G, Barbieri A, Chiossa E, Tonini M. M4 muscarinic autoreceptor-mediated inhibition of -3H-acetylcholine release in the rat isolated urinary bladder. J Pharmacol Exp Ther. 1997;283(2):750–6.

    PubMed  Google Scholar 

  69. D’Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M. Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br J Pharmacol. 2000;129(3):493–500.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Somogyi GT, de Groat WC. Function, signal transduction mechanisms and plasticity of presynaptic muscarinic receptors in the urinary bladder. Life Sci. 1999;64(6–7):411–8.

    Article  CAS  PubMed  Google Scholar 

  71. Hawthorn MH, Chapple CR, Cock M, Chess-Williams R. Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro. Br J Pharmacol. 2000;129(3):416–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol. 2006;176(4 Pt 1):1673–8.

    Article  CAS  PubMed  Google Scholar 

  73. Bschleipfer T, Schukowski K, Weidner W, Grando SA, Schwantes U, Kummer W, Lips KS. Expression and distribution of cholinergic receptors in the human urothelium. Life Sci. 2007;80(24–25):2303–7.

    Article  CAS  PubMed  Google Scholar 

  74. Mansfield KJ, Liu L, Mitchelson FJ, Moore KH, Millard RJ, Burcher E. Muscarinic receptorsubtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol. 2005;144(8):1089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mukerji G, Yiangou Y, Grogono J, Underwood J, Agarwal SK, Khullar V, Anand P. Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol. 2006a;176(1):367–73.

    Article  CAS  PubMed  Google Scholar 

  76. Grol S, Essers PB, van Koeveringe GA, Martinez-Martinez P, de Vente J, Gillespie JI. M(3) muscarinic receptor expression on suburothelial interstitial cells. BJU Int. 2009;104(3):398–405.

    Article  CAS  PubMed  Google Scholar 

  77. Mukerji G, Yiangou Y, Corcoran SL, Selmer IS, Smith GD, Benham CD, Bountra C, Agarwal SK, Anand P. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol. 2006b;6:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ikeda Y, Kanai A. Urotheliogenic modulation of intrinsic activity in spinal cord-transected rat bladders: role of mucosal muscarinic receptors. Am J Physiol Renal Physiol. 2008;295(2):F454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moro C, Uchiyama J, Chess-Williams R. Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol. Urology. 2011;78(6):1442.e9–15.

    Article  Google Scholar 

  80. Fovaeus M, Fujiwara M, Högestätt ED, Persson K, Andersson KE. A non-nitrergic smooth muscle relaxant factor released from rat urinary bladder by muscarinic receptor stimulation. J Urol. 1999;161(2):649–53.

    Article  CAS  PubMed  Google Scholar 

  81. Gary T, Robertson D. Lessons learned from dopamine b-hydroxylase deficiency in humans. News Physiol Sci. 1994;9:35–9.

    CAS  Google Scholar 

  82. Yamada S, Ito Y. α(1)-Adrenoceptors in the urinary tract. Handb Exp Pharmacol. 2011;202:283–306.

    Article  CAS  Google Scholar 

  83. Michel MC, Vrydag W. Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol. 2006;147(Suppl 2):S88–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Michelotti GA, Price DT, Schwinn DA. Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther. 2000;88(3):281–309.

    Article  CAS  PubMed  Google Scholar 

  85. Goepel M, Wittmann A, Rübben H, Michel MC. Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol Res. 1997;25(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  86. Levin RM, Ruggieri MR, Wein AJ. Identification of receptor subtypes in the rabbit and human urinary bladder by selective radio-ligand binding. J Urol. 1988;139(4):844–8.

    Article  CAS  PubMed  Google Scholar 

  87. Walden PD, Durkin MM, Lepor H, Wetzel JM, Gluchowski C, Gustafson EL. Localization of mRNA and receptor binding sites for the alpha 1a-adrenoceptor subtype in the rat, monkey and human urinary bladder and prostate. J Urol. 1997;157(3):1032–8.

    Article  CAS  PubMed  Google Scholar 

  88. Malloy BJ, Price DT, Price RR, Bienstock AM, Dole MK, Funk BL, Rudner XL, Richardson CD, Donatucci CF, Schwinn DA. Alpha1-adrenergic receptor subtypes in human detrusor. J Urol. 1998;160(3 Pt 1):937–43.

    CAS  PubMed  Google Scholar 

  89. Keast JR, Kawatani M, De Groat WC. Sympathetic modulation of cholinergic transmission in cat vesical ganglia is mediated by alpha 1- and alpha 2-adrenoceptors. Am J Physiol. 1990;258(1 Pt 2):R44–50.

    CAS  PubMed  Google Scholar 

  90. Ramage AG, Wyllie MG. A comparison of the effects of doxazosin and terazosin on the spontaneous sympathetic drive to the bladder and related organs in anaesthetized cats. Eur J Pharmacol. 1995;294(2-3):645–50.

    Article  CAS  PubMed  Google Scholar 

  91. Danuser H, Thor KB. Inhibition of central sympathetic and somatic outflow to the lower urinary tract of the cat by the alpha 1 adrenergic receptor antagonist prazosin. J Urol. 1995;153(4):1308–12.

    Article  CAS  PubMed  Google Scholar 

  92. Danuser H, Bemis K, Thor KB. Pharmacological analysis of the noradrenergic control of central sympathetic and somatic reflexes controlling the lower urinary tract in the anesthetized cat. J Pharmacol Exp Ther. 1995;274(2):820–5.

    CAS  PubMed  Google Scholar 

  93. Okutsu H, Matsumoto S, Hanai T, Noguchi Y, Fujiyasu N, Ohtake A, Suzuki M, Sato S, Sasamata M, Uemura H, Kurita T. Effects of tamsulosin on bladder blood flow and bladder function in rats with bladder outlet obstruction. Urology. 2010;75(1):235–40.

    Article  PubMed  Google Scholar 

  94. Ishihama H, Momota Y, Yanase H, Wang X, de Groat WC, Kawatani M. Activation of alpha1D adrenergic receptors in the rat urothelium facilitates the micturition reflex. J Urol. 2006;175(1):358–64.

    Article  CAS  PubMed  Google Scholar 

  95. Larsen JJ. Alpha and beta-adrenoceptors in the detrusor muscle and bladder base of the pig and beta-adrenoceptors in the detrusor muscle of man. Br J Pharmacol. 1979;65(2):215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nergårdh A, Boréus LO, Naglo AS. Characterization of the adrenergic beta-receptor in the urinary bladder of man and cat. Acta Pharmacol Toxicol (Copenh). 1977;40(1):14–21.

    Article  Google Scholar 

  97. Igawa Y, Yamazaki Y, Takeda H, Hayakawa K, Akahane M, Ajisawa Y, Yoneyama T, Nishizawa O, Andersson KE. Functional and molecular biological evidence for a possible beta3-adrenoceptor in the human detrusor muscle. Br J Pharmacol. 1999;126(3):819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Takeda M, Obara K, Mizusawa T, Tomita Y, Arai K, Tsutsui T, Hatano A, Takahashi K, Nomura S. Evidence for beta3-adrenoceptor subtypes in relaxation of the human urinary bladder detrusor: analysis by molecular biological and pharmacological methods. J Pharmacol Exp Ther. 1999a;288(3):1367–73.

    CAS  PubMed  Google Scholar 

  99. Yamazaki Y, Takeda H, Akahane M, Igawa Y, Nishizawa O, Ajisawa Y. Species differences in the distribution of beta-adrenoceptor subtypes in bladder smooth muscle. Br J Pharmacol. 1998;124(3):593–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nomiya M, Yamaguchi O. A quantitative analysis of mRNA expression of alpha 1 and beta-adrenoceptor subtypes and their functional roles in human normal and obstructed bladders. J Urol. 2003;170(2 Pt 1):649–53.

    Article  CAS  PubMed  Google Scholar 

  101. Deeks ED. Mirabegron: a review in overactive bladder syndrome. Drugs. 2018;78(8):833–44.

    Article  CAS  PubMed  Google Scholar 

  102. Barendrecht MM, Frazier EP, Vrydag W, Alewijnse AE, Peters SL, Michel MC. The effect of bladder outlet obstruction on alpha1- and beta-adrenoceptor expression and function. Neurourol Urodyn. 2009;28(4):349–55.

    Google Scholar 

  103. Michel MC, Sand C. Effect of pre-contraction on β-adrenoceptor-mediated relaxation of rat urinary bladder. World J Urol. 2009;27(6):711–5.

    Google Scholar 

  104. Sjögren C, Andersson KE, Husted S, Mattiasson A, Moller-Madsen B. Atropine resistance of transmurally stimulated isolated human bladder muscle. J Urol. 1982;128(6):1368–71.

    Article  PubMed  Google Scholar 

  105. Luheshi GN, Zar MA. Presence of non-cholinergic motor transmission in human isolated bladder. J Pharm Pharmacol. 1990;42(3):223–4.

    Article  CAS  PubMed  Google Scholar 

  106. Husted S, Sjögren C, Andersson KE. Direct effects of adenosine and adenine nucleotides on isolated human urinary bladder and their influence on electrically induced contractions. J Urol. 1983;130(2):392–8.

    Article  CAS  PubMed  Google Scholar 

  107. Hardy LA, Harvey IJ, Chambers P, Gillespie JI. A putative alternatively spliced variant of the P2X(1) purinoreceptor in human bladder. Exp Physiol. 2000;85(4):461–3.

    Article  CAS  PubMed  Google Scholar 

  108. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407(6807):1011–5.

    Article  CAS  PubMed  Google Scholar 

  109. Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford AP, Burnstock G. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci. 2001;21(15):5670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567(Pt 2):621–39.. Epub 2005 Jun 16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andersson KE. Purinergic signalling in the urinary bladder. Auton Neurosci. 2015;191:78–81.

    Article  CAS  PubMed  Google Scholar 

  112. Maggi CA. The role of neuropeptides in the regulation of the micturition reflex: an update. Gen Pharmacol. 1991;22:1–24.

    Article  CAS  PubMed  Google Scholar 

  113. Maggi CA. The dual function of capsaicin-sensitive sensory nerves in the bladder and urethra. In: Maggi CA, editor. The autonomic nervous system, Nervous control of the urogenital system, vol. 2. London: Harwood Academic Publishers; 1992.

    Google Scholar 

  114. Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol. 1995;45:1–98.

    Article  CAS  PubMed  Google Scholar 

  115. Arms L, Vizzard MA. Neuropeptides in lower urinary tract function. Handb Exp Pharmacol. 2011;202:395–423.

    Article  CAS  Google Scholar 

  116. Maggi CA, Barbanti G, Santicioli P, Beneforti P, Misuri D, Meli A, Turini D. Cystometric evidence that capsaicin-sensitive nerves modulate the afferent branch of micturition reflex in humans. J Urol. 1989;142(1):150–4.

    Article  CAS  PubMed  Google Scholar 

  117. Cruz F. Desensitization of bladder sensory fibers by intravesical capsaicin or capsaicin analogs. A new strategy for treatment of urge incontinence in patients with spinal detrusor hyperreflexia or bladder hypersensitivity disorders. Int Urogynecol J Pelvic Floor Dysfunct. 1998;9(4):214–20.

    Google Scholar 

  118. Giuliani S, Patacchini R, Giachetti A, et al. In vivo and in vitro activity of SR 48,968, a non-peptide tachykinin NK-2 receptor antagonist. Regul Pept. 1993;46:314–6.

    Article  CAS  PubMed  Google Scholar 

  119. Andersson PO, Bloom SR, Mattiasson A, Uvelius B. Bladder vasodilatation and release of vasoactive intestinal polypeptide from the urinary bladder of the cat in response to pelvic nerve stimulation. J Urol. 1987;138(3):671–3.

    Article  CAS  PubMed  Google Scholar 

  120. Andersson PO, Sjögren C, Uvnäs B, Uvnäs-Moberg K. Urinary bladder and urethral responses to pelvic and hypogastric nerve stimulation and their relation to vasoactive intestinal polypeptide in the anaesthetized dog. Acta Physiol Scand. 1990a;138(3):409–16.

    Article  CAS  PubMed  Google Scholar 

  121. Klarskov P, Holm-Bentzen M, Nørgaard T, Ottesen B, Walter S, Hald T. Vasoactive intestinal polypeptide concentration in human bladder neck smooth muscle and its influence on urodynamic parameters. Br J Urol. 1987;60(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  122. Persson K, Garcia-Pascual A, Andersson KE. Difference in the actions of calcitonin gene-related peptide on pig detrusor and vesical arterial smooth muscle. Acta Physiol Scand. 1991;143(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  123. Giuliani S, Santicioli P, Lippi A, Lecci A, Tramontana M, Maggi CA. The role of sensory neuropeptides in motor innervation of the hamster isolated urinary bladder. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(3):242–8.

    Article  CAS  PubMed  Google Scholar 

  124. Uckert S, Stief CG, Lietz B, Burmester M, Jonas U, Machtens SA. Possible role of bioactive peptides in the regulation of human detrusor smooth muscle—functional effects in vitro and immunohistochemical presence. World J Urol. 2002;20(4):244–9.

    Article  CAS  PubMed  Google Scholar 

  125. Crowe R, Noble J, Robson T, Soediono P, Milroy EJ, Burnstock G. An increase of neuropeptide Y but not nitric oxide synthase-immunoreactive nerves in the bladder neck from male patients with bladder neck dyssynergia. J Urol. 1995;154(3):1231–6.

    Article  CAS  PubMed  Google Scholar 

  126. Dixon JS, Jen PY, Gosling JA. A double-label immunohistochemical study of intramural ganglia from the human male urinary bladder neck. J Anat. 1997;190(Pt 1):125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Davis B, Goepel M, Bein S, Chess-Williams R, Chapple CR, Michel MC. Lack of neuropeptide Y receptor detection in human bladder and prostate. BJU Int. 2000;85(7):918–24.

    Article  CAS  PubMed  Google Scholar 

  128. Lundberg JM, Hua XY, Franco-Cereceda A. Effects of neuropeptide Y (NPY) on mechanical activity and neurotransmission in the heart, vas deferens and urinary bladder of the guinea-pig. Acta Physiol Scand. 1984;121(4):325–32.

    Article  CAS  PubMed  Google Scholar 

  129. Zoubek J, Somogyi GT, De Groat WC. A comparison of inhibitory effects of neuropeptide Y on rat urinary bladder, urethra, and vas deferens. Am J Physiol. 1993;265(3 Pt 2):R537–43.

    CAS  PubMed  Google Scholar 

  130. Iravani MM, Zar MA. Neuropeptide Y in rat detrusor and its effect on nerve-mediated and acetylcholine-evoked contractions. Br J Pharmacol. 1994;113(1):95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tran LV, Somogyi GT, De Groat WC. Inhibitory effect of neuropeptide Y on adrenergic and cholinergic transmission in rat urinary bladder and urethra. Am J Physiol. 1994;266(4 Pt 2):R1411–7.

    CAS  PubMed  Google Scholar 

  132. Ishizuka O, Mattiasson A, Andersson KE. Prostaglandin E2-induced bladder hyperactivity in normal, conscious rats: involvement of tachykinins? J Urol. 1995;153(6):2034–8.

    Article  CAS  PubMed  Google Scholar 

  133. Martínez-Saénz A, Barahona MV, Orensanz LM, Recio P, Bustamante S, Benedito S, Carballido J, García-Sacristán A, Prieto D, Hernández M. Mechanisms involved in the nitric oxide independent inhibitory neurotransmission to the pig urinary bladder neck. Neurourol Urodyn. 2011;30(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  134. Smet PJ, Edyvane KA, Jonavicius J, Marshall VR. Distribution of NADPH-diaphorase-positive nerves supplying the human urinary bladder. J Auton Nerv Syst. 1994;47(1–2):109–13.

    Article  CAS  PubMed  Google Scholar 

  135. James MJ, Birmingham AT, Hill SJ. Partial mediation by nitric oxide of the relaxation of human isolated detrusor strips in response to electrical field stimulation. Br J Clin Pharmacol. 1993;35(4):366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Persson K, Igawa Y, Mattiasson A, Andersson K-E. Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br J Pharmacol. 1992;107:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Elliott RA, Castleden CM. Nerve mediated relaxation in human detrusor muscle. Br J Clin Pharmacol. 1993;36(5):479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Andersson KE, Persson K. Nitric oxide synthase and nitric oxide-mediated effects in lower urinary tract smooth muscles. World J Urol. 1994;12(5):274–80.

    CAS  PubMed  Google Scholar 

  139. Morita T, Tsujii T, Dokita S. Regional difference in functional roles of cAMP and cGMP in lower urinary tract smooth muscle contractility. Urol Int. 1992a;49(4):191–5.

    Article  CAS  PubMed  Google Scholar 

  140. Franken J, Uvin P, De Ridder D, Voets T. TRP channels in lower urinary tract dysfunction. Br J Pharmacol. 2014;171(10):2537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Deruyver Y, Voets T, De Ridder D, Everaerts W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int. 2015;115(5):686–97.

    Article  CAS  PubMed  Google Scholar 

  142. Andersson KE. Potential future pharmacological treatment of bladder dysfunction. Basic Clin Pharmacol Toxicol. 2016a;119(Suppl 3):75–85.

    Article  CAS  PubMed  Google Scholar 

  143. Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol. 2016;13(4):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Andersson KE. Pharmacology: On the mode of action of mirabegron. Nat Rev Urol. 2016b;13(3):131–2.

    Article  PubMed  Google Scholar 

  145. Yu W, Hill WG, Apodaca G, Zeidel ML. Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am J Physiol Renal Physiol. 2011;300(1):F49–59.

    Article  CAS  PubMed  Google Scholar 

  146. Avelino A, Charrua A, Frias B, Cruz C, Boudes M, de Ridder D, Cruz F. Transient receptor potential channels in bladder function. Acta Physiol (Oxf). 2013;207(1):110–22.

    Article  CAS  Google Scholar 

  147. Janssen DAW, Schalken JA, Heesakkers JPFA. Urothelium update: how the bladder mucosa measures bladder filling. Acta Physiol (Oxf). 2017;220(2):201–17.

    Article  CAS  Google Scholar 

  148. Vennekens R, Owsianik G, Nilius B. Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des. 2008;14(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  149. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.

    Article  CAS  PubMed  Google Scholar 

  150. Bevan S, Quallo T, Andersson DA. TRPV1. Handb Exp Pharmacol. 2014;222:207–45.

    Article  CAS  PubMed  Google Scholar 

  151. Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J Biol Chem. 2007;282(21):15894–902.

    Article  CAS  PubMed  Google Scholar 

  152. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res. 2003;93(9):829–38.

    Article  CAS  PubMed  Google Scholar 

  153. Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, Nilius B. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol. 2010a;298(3):F692–701.

    Article  CAS  PubMed  Google Scholar 

  154. Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol. 2010b;103(1):2–17.

    Article  CAS  PubMed  Google Scholar 

  155. Caprodossi S, Lucciarini R, Amantini C, Nabissi M, Canesin G, Ballarini P, Di Spilimbergo A, Cardarelli MA, Servi L, Mammana G, Santoni G. Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage. Eur Urol. 2008;54(3):612–20.

    Article  CAS  PubMed  Google Scholar 

  156. Isogai A, Lee K, Mitsui R, Hashitani H. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder. Pflugers Arch. 2016;468(9):1573–85.

    Article  CAS  PubMed  Google Scholar 

  157. Lee H, Koh BH, Peri LE, Corrigan RD, Lee HT, George NE, Bhetwal BP, Xie Y, Perrino BA, Chai TC, Sanders KM, Koh SD. Premature contractions of the bladder are suppressed by interactions between TRPV4 and SK3 channels in murine detrusor PDGFRα+ cells. Sci Rep. 2017;7(1):12245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest. 2007;117(11):3453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009;284(32):21257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Takaoka EI, Kurobe M, Okada H, Takai S, Suzuki T, Shimizu N, Kwon J, Nishiyama H, Yoshimura N, Chermansky CJ. Effect of TRPV4 activation in a rat model of detrusor underactivity induced by bilateral pelvic nerve crush injury. Neurourol Urodyn. 2018;37(8):2527–34.

    Article  CAS  PubMed  Google Scholar 

  161. Deruyver Y, Weyne E, Dewulf K, Rietjens R, Pinto S, Van Ranst N, Franken J, Vanneste M, Albersen M, Gevaert T, Vennekens R, De Ridder D, Voets T, Everaerts W. Intravesical activation of the cation channel TRPV4 improves bladder function in a rat model for detrusor underactivity. Eur Urol. 2018;74(3):336–4.

    Article  PubMed  Google Scholar 

  162. Zygmunt PM, Högestätt ED. TRPA1. Handb Exp Pharmacol. 2014;222:583–630.

    Article  CAS  PubMed  Google Scholar 

  163. Du S, Araki I, Yoshiyama M, Nomura T, Takeda M. Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology. 2007;70(4):826–31.

    Article  PubMed  Google Scholar 

  164. Andrade EL, Ferreira J, André E, Calixto JB. Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem Pharmacol. 2006;72(1):104–14.

    Article  CAS  PubMed  Google Scholar 

  165. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Högestätt ED, Zygmunt PM. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol. 2008;53(2):391–9.

    Article  CAS  PubMed  Google Scholar 

  166. Almaraz L, Manenschijn JA, de la Pena E, Viana F. TRPM8. Handb Exp Pharmacol. 2014;222:547–79.

    Article  CAS  PubMed  Google Scholar 

  167. Ito H, Aizawa N, Sugiyama R, Watanabe S, Takahashi N, Tajimi M, Fukuhara H, Homma Y, Kubota Y, Andersson KE, Igawa Y. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int. 2016;117(3):484–94.

    Article  CAS  PubMed  Google Scholar 

  168. Andersson KE, Gratzke C, Hedlund P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int. 2010;106(8):1114–27.

    Google Scholar 

  169. Andersson KE. Neurotransmission and drug effects in urethral smooth muscle. Scand J Urol Nephrol Suppl. 2001;207:26–34.

    Article  Google Scholar 

  170. Canda AE, Cinar MG, Turna B, Sahin MO. Pharmacologic targets on the female urethra. Urol Int. 2008;80(4):341–54.

    Article  CAS  PubMed  Google Scholar 

  171. Lincoln J, Burnstock G. Autonomic innervation of the urinary bladder and urethra. In: Maggi CA, editor. The autonomic nervous system. Nervous control of the urogenital system, vol. 6. London: Harwood Academic Publishers; 1993. p. 33–68.

    Google Scholar 

  172. Appell RA, England HR, Hussell AR, McGuire EJ. The effects of epidural anesthesia on the urethral closure pressure profile in patients with prostatic enlargement. J Urol. 1980;124:410–1.

    Article  CAS  PubMed  Google Scholar 

  173. Furuya S, Kumamoto Y, Yokoyama E, Tsukamoto T, Izumi T, Abiko Y. Alpha-adrenergic activity and urethral pressure in prostatic zone in benign prostatic hypertrophy. J Urol. 1982;128:836–9.

    Article  CAS  PubMed  Google Scholar 

  174. Brading AF, McCoy R, Dass N. alpha1-Adrenoceptors in urethral function. Eur Urol. 1999;36(Suppl 1):74–9.

    Article  CAS  PubMed  Google Scholar 

  175. Nasu K, Moriyama N, Fukasawa R, Tsujimoto G, Tanaka T, Yano J, Kawabe K. Quantification and distribution of alpha1-adrenoceptor subtype mRNAs in human proximal urethra. Br J Pharmacol. 1998;123:1289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Taki N, Taniguchi T, Okada K, Moriyama N, Muramatsu I. Evidence for predominant mediation of alpha1-adrenoceptor in the tonus of entire urethra of women. J Urol. 1999;162:1829–32.

    Article  CAS  PubMed  Google Scholar 

  177. Daniels DV, Gever JR, Jasper JR, Kava MS, Lesnick JD, Meloy TD, Stepan G, Williams TJ, Clarke DE, Chang DJ, Ford AP. Human cloned alpha1A-adrenoceptor isoforms display alpha1L-adrenoceptor pharmacology in functional studies. Eur J Pharmacol. 1999;370:337–43.

    Article  CAS  PubMed  Google Scholar 

  178. Fukasawa R, Taniguchi N, Moriyama N, Ukai Y, Yamazaki S, Ueki T, Kameyama S, Kimura K, Kawabe K. The alpha1L-adrenoceptor subtype in the lower urinary tract: a comparison of human urethra and prostate. Br J Urol. 1998;82:733–7.

    Article  CAS  PubMed  Google Scholar 

  179. Mattiasson A, Andersson KE, Sjögren C. Adrenoceptors and cholinoceptors controlling noradrenaline release from adrenergic nerves in the urethra of rabbit and man. J Urol. 1984a;131(6):1190–5.

    Article  CAS  PubMed  Google Scholar 

  180. Nordling J. Effects of clonidine (Catapresan) on urethral pressure. Invest Urol. 1979;16:289–91.

    CAS  PubMed  Google Scholar 

  181. Alberts P. Subtype classification of the presynaptic alpha-adrenoceptors which regulate [3H]-noradrenaline secretion in guinea-pig isolated urethra. Br J Pharmacol. 1992;105:142–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Werkstrom V, Persson K, Andersson KE. NANC transmitters in the female pig urethra—localization and modulation of release via alpha 2-adrenoceptors and potassium channels. Br J Pharmacol. 1997;121:1605–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yamanishi T, Chapple CR, Yasuda K, Yoshida K, Chess-Williams R. The functional role of beta-adrenoceptor subtypes in mediating relaxation of pig urethral smooth muscle. J Urol. 2003;170(6 Pt 1):2508–11.

    Article  PubMed  Google Scholar 

  184. Takeda H, Matsuzawa A, Igawa Y, Yamazaki Y, Kaidoh K, Akahane S, Kojima M, Miyata H, Akahane M, Nishizawa O. Functional characterization of beta-adrenoceptor subtypes in the canine and rat lower urinary tract. J Urol. 2003;170(2 Pt 1):654–8.

    Google Scholar 

  185. Springer JP, Kropp BP, Thor KB. Facilitatory and inhibitory effects of selective norepinephrine reuptake inhibitors on hypogastric nerve-evoked urethral contractions in the cat: a prominent role of urethral beta-adrenergic receptors. J Urol. 1994;152(2 Pt 1):515–9.

    Article  CAS  PubMed  Google Scholar 

  186. Thind P, Lose G, Colstrup H, Andersson KE. The influence of beta-adrenoceptor and muscarinic receptor agonists and antagonists on the static urethral closure function in healthy females. Scand J Urol Nephrol. 1993;27:31–8.

    Article  CAS  PubMed  Google Scholar 

  187. Alexandre EC, Kiguti LR, Calmasini FB, Silva FH, da Silva KP, Ferreira R, Ribeiro CA, Mónica FZ, Pupo AS, Antunes E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3 -adrenoceptor activation and α1 -adrenoceptor blockade. Br J Pharmacol. 2016;173(3):415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Laval KU, Hannappel J, Lutzeyer W. Effects of beta-adrenergic stimulating and blocking agents on the dynamics of the human bladder outlet. Urol Int. 1978;33:366–9.

    Article  CAS  PubMed  Google Scholar 

  189. Rao MS, Bapna BC, Sharma PL, Chary KS, Vaidyanathan S. Clinical import of beta-adrenergic activity in the proximal urethra. J Urol. 1980;124:254–5.

    Article  CAS  PubMed  Google Scholar 

  190. Vaidyanathan S, Rao MS, Bapna BC, Chary KS, Palaniswamy R. Beta-adrenergic activity in human proximal urethra: a study with terbutaline. J Urol. 1980;124:869–71.

    Article  CAS  PubMed  Google Scholar 

  191. Morita T, Iizuka H, Iwata T, Kondo S. Function and distribution of beta3-adrenoceptors in rat, rabbit and human urinary bladder and external urethral sphincter. J Smooth Muscle Res. 2000;36:21–32.

    Article  CAS  PubMed  Google Scholar 

  192. Persson K, Alm P, Johansson K, Larsson B, Andersson K-E. Co-existence of nitrergic, peptidergic and acetylcholine esterase-positive nerves in the pig lower urinary tract. J Auton Nerv Syst. 1995a;52:225–36.

    Article  CAS  PubMed  Google Scholar 

  193. Werkstrom V, Alm P, Persson K, Andersson KE. Inhibitory innervation of the guinea-pig urethra; roles of CO, NO and VIP. J Auton Nerv Syst. 1998;74:33–42.

    Article  CAS  PubMed  Google Scholar 

  194. Johns A. Alpha- and beta-adrenergic and muscarinic cholinergic binding sites in the bladder and urethra of the rabbit. Can J Physiol Pharmacol. 1983;61:61–6.

    Article  CAS  PubMed  Google Scholar 

  195. Mattiasson A, Andersson KE, Andersson PO, Larsson B, Sjögren C, Uvelius B. Nerve-mediated functions in the circular and longitudinal muscle layers of the proximal female rabbit urethra. J Urol. 1990;143(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  196. Persson CG, Andersson KE. Adrenoceptor and cholinoceptor mediated effects in the isolated urethra of cat and guinea-pig. Clin Exp Pharmacol Physiol. 1976;3:415–26.

    Article  CAS  PubMed  Google Scholar 

  197. Andersson KE, Persson CG, Alm P, Kullander S, Ulmsten U. Effects of acetylcholine, noradrenaline, and prostaglandins on the isolated, perfused human fetal urethra. Acta Physiol Scand. 1978;104:394–401.

    Article  CAS  PubMed  Google Scholar 

  198. Ek A, Andersson KE, Ulmsten U. The effects of norephedrine and bethanechol on the human urethral closure pressure profile. Scand J Urol Nephrol. 1978;12:97–104.

    Article  CAS  PubMed  Google Scholar 

  199. Ulmsten U, Andersson KE. The effects of emeprone on intravesical and intra-urethral pressure in women with urgency incontinence. Scand J Urol Nephrol. 1977;11:103–9.

    Article  CAS  PubMed  Google Scholar 

  200. Mutoh S, Latifpour J, Saito M, Weiss RM. Evidence for the presence of regional differences in the subtype specificity of muscarinic receptors in rabbit lower urinary tract. J Urol. 1997;157(2):717–21.

    Article  CAS  PubMed  Google Scholar 

  201. Nagahama K, Tsujii T, Morita T, Azuma H, Oshima H. Differences between proximal and distal portions of the male rabbit posterior urethra in the physiological role of muscarinic cholinergic receptors. Br J Pharmacol. 1998;124(6):1175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Slack BE, Downie JW. Pharmacological analysis of the responses of the feline urethra to autonomic nerve stimulation. J Auton Nerv Syst. 1983;8:141–60.

    Article  CAS  PubMed  Google Scholar 

  203. Burnett AL. Nitric oxide control of lower genitourinary tract functions: A review. Urology. 1995;45:1071–83.

    Article  CAS  PubMed  Google Scholar 

  204. Dokita S, Smith SD, Nishimoto T, Wheeler MA, Weiss RM. Involvement of nitric oxide and cyclic GMP in rabbit urethral relaxation. Eur J Pharmacol. 1994;269:269–75.

    Article  Google Scholar 

  205. Persson K, Andersson K-E. Non-adrenergic, non-cholinergic relaxation and levels of cyclic nucleotides in rabbit lower urinary tract. Eur J Pharmacol. 1994;268:159–67.

    Article  CAS  PubMed  Google Scholar 

  206. Schroder A, Hedlund P, Andersson KE. Carbon monoxide relaxes the female pig urethra as effectively as nitric oxide in the presence of YC-1. J Urol. 2002;167(4):1892–6.

    Article  CAS  PubMed  Google Scholar 

  207. Peng W, Hoidal JR, Farrukh IS. Regulation of Ca2+-activated K+ channels in pulmonary vascular smooth muscle cells: role for nitric oxide. J Appl Physiol. 1996;81:1264–72.

    Article  CAS  PubMed  Google Scholar 

  208. Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP-dependent protein kinase activates Ca-activated K-channels in cerebral artery smooth muscle cells. Am J Physiol. 1993;265:C299–303.

    Article  CAS  PubMed  Google Scholar 

  209. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368:850–3.

    Article  CAS  PubMed  Google Scholar 

  210. Koh SD, Campbell AC, Sanders KM. Nitric oxide activates multiple potassium channels in canine colonic smooth muscle. J Physiol. 1995;489:735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Warner T, Mitchell JA, Sheng H, Murad F. Effects of cyclic GMP on smooth muscle relaxation. Adv Pharmacol. 1994;26:171–94.

    Article  CAS  PubMed  Google Scholar 

  212. Ito Y, Kimoto Y. The neural and non-neural mechanisms involved in urethral activity in rabbits. J Physiol. 1985;367:57–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Waldeck K, Persson K, Andersson K-E. Effects of KRN2391, a novel vasodilator acting as a nitrate and a K+ channel opener, on the rabbit lower urinary tract. Gen Pharmacol. 1995;26:1559–64.

    Article  CAS  PubMed  Google Scholar 

  214. Persson K, Kumar Pandita R, Aszòdi A, Ahmad M, Pfeifer A, Fässler R, Andersson K-E. Functional characteristics of lower urinary tract smooth muscles in mice lacking cyclic GMP protein kinase type I. Am J Physiol Regul Integr Comp Physiol. 2000;279(3):R1112–20.

    Article  CAS  PubMed  Google Scholar 

  215. Waldeck K, Ny L, Persson K, Andersson KE. Mediators and mechanisms of relaxation in rabbit urethral smooth muscle. Br J Pharmacol. 1998;123(4):617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Smet PJ, Jonavicius J, Marshall VR, De Vente J. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience. 1996;71:337–48.

    Article  CAS  PubMed  Google Scholar 

  217. Naseem KM, Mumtaz FH, Thompson CS, Sullivan ME, Khan MA, Morgan RJ, Mikhailidis DP, Bruckdorfer KR. Relaxation of rabbit lower urinary tract smooth muscle by nitric oxide and carbon monoxide: modulation by hydrogen peroxide. Eur J Pharmacol. 2000;387(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  218. Pinna C, Glass R, Knight GE, Bolego C, Puglisi L, Burnstock G. Purine- and pyrimidine-induced responses and P2Y receptor characterization in the hamster proximal urethra. Br J Pharmacol. 2005;144:510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Callahan SM, Creed KE. Electrical and mechanical activity of the isolated lower urinary tract of the guinea-pig. Br J Pharmacol. 1981;74:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ohnishi N, Park YC, Kurita T, Kajimoto N. Role of ATP and related purine compounds on urethral relaxation in male rabbits. Int J Urol. 1997;4:191–7.

    Article  CAS  PubMed  Google Scholar 

  221. Pinna C, Puglisi L, Burnstock G. ATP and vasoactive intestinal polypeptide relaxant responses in hamster isolated proximal urethra. Br J Pharmacol. 1998;124:1069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Werkström V, Andersson KE. ATP- and adenosine-induced relaxation of the smooth muscle of the pig urethra. BJU Int. 2005;96(9):1386–91.

    Article  CAS  PubMed  Google Scholar 

  223. Hashitani H, Van Helden DF, Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol. 1996;118(7):1627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hashitani H, Edwards FR. Spontaneous and neurally activated depolarizations in smooth muscle cells of the guinea-pig urethra. J Physiol. 1999;514(Pt 2):459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Sergeant GP, Hollywood MA, McCloskey KD, Thornbury KD, McHale NG. Specialised pacemaking cells in the rabbit urethra. J Physiol. 2000;526(Pt 2):359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Characterization of norepinephrine-evoked inward currents in interstitial cells isolated from the rabbit urethra. Am J Physiol Cell Physiol. 2002;283(3):C885–94.

    Article  CAS  PubMed  Google Scholar 

  227. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Interstitial cells of Cajal in the urethra. J Cell Mol Med. 2006;10(2):280–91.

    Article  CAS  PubMed  Google Scholar 

  228. Deplanne V, Palea S, Angel I. The adrenergic, cholinergic and NANC nerve-mediated contractions of the female rabbit bladder neck and proximal, medial and distal urethra. Br J Pharmacol. 1998;123(8):1517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bradley E, Kadima S, Drumm B, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP. Novel excitatory effects of adenosine triphosphate on contractile and pacemaker activity in rabbit urethral smooth muscle. J Urol. 2010;183(2):801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bradley E, Kadima S, Kyle B, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP. P2X receptor currents in smooth muscle cells contribute to nerve mediated contractions of rabbit urethral smooth muscle. J Urol. 2011;186(2):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Barry CM, Ji E, Sharma H, Yap P, Spencer NJ, Matusica D, Haberberger RV. Peptidergic nerve fibers in the urethra: Morphological and neurochemical characteristics in female mice of reproductive age. Neurourol Urodyn. 2018;37(3):960–70.

    Article  CAS  PubMed  Google Scholar 

  232. Yoshiyama M, de Groat WC. The role of vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide in the neural pathways controlling the lower urinary tract. J Mol Neurosci. 2008;36(1–3):227–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sjögren C, Andersson KE, Mattiasson A. Effects of vasoactive intestinal polypeptide on isolated urethral and urinary bladder smooth muscle from rabbit and man. J Urol. 1985;133(1):136–40.

    Article  PubMed  Google Scholar 

  234. Wein A. Pathophysiology and classification of lower urinary tract dysfunction: overview. In: Wein A, et al., editors. Campbell-Walsh urology. 11th ed. Philadelphia: Elsevier Press; 2016. p. 1685–96.

    Google Scholar 

  235. Andersson K-E, Persson K. The L-arginine/nitric oxide pathway and none-adrenergic, none-cholinergic relaxation of the lower urinary tract. Gen Pharmacol. 1993;24:833–9.

    Article  CAS  PubMed  Google Scholar 

  236. Werkström V, Alm P, Persson K, Andersson KE. Inhibitory innervation of the guinea-pig urethra; roles of CO, NO and VIP. J Auton Nerv Syst. 1998;74(1):33–42.

    Article  PubMed  Google Scholar 

  237. Werkström V, Ny L, Persson K, Andersson K-E. Carbon monoxide-induced relaxation and distribution of haeme oxygenase isoenzymes in the pig urethra and in the lower oesophagogastric junction. Br J Pharmacol. 1997;120:312–8.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Dalziel HH, Thornbury KD, Ward SM, Sanders KM. Involvement of nitric oxide synthetic pathway in inhibitory junction potentials in canine proximal colon. Am J Physiol. 1991;260:G789–92.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Erik Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andersson, KE., Wein, A.J. (2020). Anatomy, Physiology and Pharmacology of the Lower Urinary Tract. In: Chapple, C., Steers, W., Evans, C. (eds) Urologic Principles and Practice. Springer Specialist Surgery Series. Springer, Cham. https://doi.org/10.1007/978-3-030-28599-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28599-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28598-2

  • Online ISBN: 978-3-030-28599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics