Skip to main content

Ureteral Physiology and Pharmacology

  • Chapter
  • First Online:
Urologic Principles and Practice

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

  • 1292 Accesses

Abstract

The ureters are retroperitoneal structures that carry urine from the kidney to the bladder. They travel inferiorly from the renal pelvis at the ureteropelvic junction (UPJ), course anteriorly along psoas major, pass over the pelvic brim at the level of the common iliac artery bifurcation, and then run along the lateral pelvic sidewall to enter the urinary bladder. In adults they are typically 22–30 cm in length and 1.5–6 mm in diameter. Radiologically, the ureter is divided into three segments: proximal (UPJ to sacroiliac joint), middle (overlying sacrum), and distal (lower border of sacroiliac joint to bladder) [Aly Elkoushy M, Andonian S. In: Wein A, Kavoussi L, Partin A, Peters C, editors. Campbell-Walsh urology. 11th ed. Elsevier, Philadelphia, 2016].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aly Elkoushy M, Andonian S. Surgical, radiologic, and endoscopic anatomy of the kidney and ureter. In: Wein A, Kavoussi L, Partin A, Peters C, editors. Campbell-Walsh urology. 11th ed. Philadelphia, PA: Elsevier; 2016.

    Google Scholar 

  2. Birder L. Role of the urothelium in bladder function. Scand Urol J. 2004;215:48–53.

    Article  Google Scholar 

  3. Morita T, Ando M, Kihara K, Oshima H. Function and distribution of autonomic receptors in canine ureteral smooth muscle. Urol Int. 1995;55:123–7.

    Article  CAS  PubMed  Google Scholar 

  4. Weiss R, Martin D. Physiology and pharmacology of the renal pelvis and ureter. In: Wein A, Kavoussi L, Partin A, Peters C, editors. Campbell-Walsh urology. 11th ed. Philadelphia, PA: Elsevier; 2016.

    Google Scholar 

  5. Longrigg N. Minor calyces as primary pacemaker sites for ureteral activity in man. Lancet. 1975;1:253.

    Article  CAS  PubMed  Google Scholar 

  6. Lang RJ, Zhang Y. The effects of K+ channel blockers on the spontaneous electrical and contractile activity in the proximal renal pelvis of the guinea pig. J Urol. 1996;155(1):332–6.

    Article  CAS  PubMed  Google Scholar 

  7. Santicioli P, et al. Calcitonin gene-related peptide selectively increases cAMP levels in the guinea-pig ureter. Eur J Pharmacol Mol Pharmacol. 1995;289(1):17–21.

    Article  CAS  Google Scholar 

  8. Feeney M, Rosenblum N. Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery. Pediatr Nephrol. 2014;29(4):629–35.

    Article  PubMed  Google Scholar 

  9. Lang RJ, Davidson ME, Exintaris B. Pyeloureteral motility and ureteral peristalsis: essential role of sensory nerves and endogenous prostaglandins. Exp Physiol. 2002;87:129.

    Article  CAS  PubMed  Google Scholar 

  10. Klemm MF, Exintaris B, Lang RJ. Identification of the cells underlying pacemaker activity in the guinea‐pig upper urinary tract. J Physiol. 1999;519(3):867–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andersson R, Nilsson K. Cyclic AMP and calcium in relaxation in intestinal smooth muscle. Nat New Biol. 1972;238:119.

    Article  CAS  PubMed  Google Scholar 

  12. Davidson ME, Lang RJ. Effects of selective inhibitors of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) on the spontaneous myogenic contractions in the upper urinary tract of the guinea-pig and rat. Br J Pharmacol. 2000;129(4):661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Conor VJ Jr, Dawson-Edwards P. Role of the ureter in renal transplantation I: studies of denervated ureter with particular reference to ureterouerteral anastamosis. J Urol. 1959;82:566.

    Article  PubMed  Google Scholar 

  14. Melick WF, Naryka JJ, Schmidt JH. Experimental studies of ureteral peristaltic patterns in the pig. II. Myogenic activity of the pig ureter. J Urol. 1961;86:46–50.

    Article  CAS  PubMed  Google Scholar 

  15. Hernández M, Simonsen U, Prieto D, et al. Different muscarinic receptor subtypes mediating the phasic activity and basal tone of pig isolated intravesical ureter. Br J Pharmacol. 1993;110:1413.

    Article  PubMed  Google Scholar 

  16. Tomiyama Y, Wanajo I, Tamazaki Y, et al. Effects of cholinergic drugs on ureteral function in anesthetized dogs. J Urol. 2004;172:1520.

    Article  CAS  PubMed  Google Scholar 

  17. Hernandez M, Prieto D, Simonsen U, et al. Noradrenaline modulates smooth muscle activity of the isolated intravesical ureter of the pig through different types of adrenoceptors. Br J Pharmacol. 1992;107:924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vereecken RL, Derluyn J, Verduyn H. The viscoelastic behavior of the ureter during elongation. Urol Res. 1973;1:15.

    Article  CAS  PubMed  Google Scholar 

  19. Rose JG, Gillenwater JY. The effect of adrenergic and cholinergic agents and their blockers upon ureteral activity. Invest Urol. 1974;11:439.

    CAS  PubMed  Google Scholar 

  20. Hernández M, Prieto D, Orensanz LM, et al. Nitric oxide is involved in the non-adrenergic, non-cholinergic inhibitory neurotransmission of the pig intravesical ureter. Neurosci Lett. 1995;186:33.

    Article  PubMed  Google Scholar 

  21. Satani Y. Experimental studies of the ureter. Am J Physiol. 1919;49:474.

    Article  Google Scholar 

  22. Ross JA, Edmond P, Griffiths JM. The action of drugs on the intact human ureter. Br J Urol. 1967;39:26.

    Article  CAS  PubMed  Google Scholar 

  23. McLeod DG, Reynolds DG, Swan RG. Adrenergic mechanisms in the canine ureter. Am J Physiol. 1973;224:1054.

    Article  CAS  PubMed  Google Scholar 

  24. Tomiyama Y, Kobayashi K, Tadachi M, et al. Expressions and mechanical functions of α1 adrenoceptor subtypes in hamster ureter. Eur J Pharmacol. 2007;573:201.

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi S, Tomiyama Y, Hoyano Y, et al. Gene expressions and mechanical functions of α1 adrenoceptor subtypes in mouse ureter. World J Urol. 2009;27:775.

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki S, Tomiyama Y, Kobayashi S, et al. Characterization of α1 adrenoceptor subtypes mediating contraction in human isolated ureters. Urology. 2011;77:e13.

    Article  Google Scholar 

  27. Weiss RM, Bassett AL, Hoffman BF. Adrenergic innervation of the ureter. Invest Urol. 1978;16:123.

    CAS  PubMed  Google Scholar 

  28. Rivera L, Hernández M, Benedito S, et al. Mediation of contraction and relaxation by alpha- and beta-adrenoceptors in the ureterovesical junction of the sheep. Res Vet Sci. 1992;52:57.

    Article  CAS  PubMed  Google Scholar 

  29. Danuser HR, Weiss R, Abel D, et al. Systemic and topical drug administration in the pig ureter: effect of phosphodiesterase inhibitors, α1, β1 and β2-adrenergic receptor agonists and antagonists on the frequency and amplitude of ureteral contractions. J Urol. 2001;166:714.

    Article  CAS  PubMed  Google Scholar 

  30. Patacchini R, Santicioli P, Zagorodynuk V, et al. Excitatory motor and electrical effects produced by tachykinins in the human and guinea-pig isolated ureter and guinea-pig renal pelvis. Br J Pharmacol. 1998;125:987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hua XY, Lundberg JM. Dual capsaicin effects on ureteric motility: low dose inhibition mediated by calcitonin gene-related peptide and high dose stimulation by tachykinins? Acta Physiol Scand. 1986;128:453.

    Article  CAS  PubMed  Google Scholar 

  32. Martin TV, Wheeler MA, Weiss RM. Neurokinin induced inositol phosphate production in guinea pig bladder. J Urol. 1997;157:1098.

    Article  CAS  PubMed  Google Scholar 

  33. Jerde TJ, Saban R, Bjorling DE, et al. Distribution of neuropeptides, histamine content, and inflammatory cells in the ureter. Urology. 2000;56:173.

    Article  CAS  PubMed  Google Scholar 

  34. Nakada SY, Jerde TJ, Bjorling DE, et al. In vitro contractile effects of neurokinin receptor blockade in the human ureter. J Urol. 2001;166:1534.

    Article  CAS  PubMed  Google Scholar 

  35. Maggi CA, Giuliani S. A thiorphan-sensitive mechanism regulates the action of both exogenous and endogenous calcitonin gene-related peptide (CGRP) in the guinea-pig ureter. Regul Pept. 1994;51:263.

    Article  CAS  PubMed  Google Scholar 

  36. Santicioli P, Maggi CA. Inhibitory transmitter action of CGRP in guinea-pig ureter via activation of glibenclamide-sensitive K+ channels. Br J Pharmacol. 1994;113:588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jerde TJ, Calamon-Dixon JL, Bjorling DE, et al. Celecoxib inhibits ureteral contractility and prostanoid release. Urology. 2005;65:185.

    Article  PubMed  Google Scholar 

  38. Ankem MK, Jerde TJ, Wilkinson ER, Nakada SY. Third prize: prostaglandin E(2)-3 receptor is involved in ureteral contractility in obstruction. J Endourol. 2005;19:1088–91.

    Article  PubMed  Google Scholar 

  39. Laird JM, Roza C, Cervero F. Effects of artificial calculosis on rat ureter motility: peripheral contribution to the pain of ureteric colic. Am J Physiol. 1997;272:R1409.

    CAS  PubMed  Google Scholar 

  40. Rose JG, Gillenwater JY. Pathophysiology of ureteral obstruction. Am J Physiol. 1973;225:830.

    Article  CAS  PubMed  Google Scholar 

  41. Gottschalk CW, Mylle M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956;185:430.

    Article  CAS  PubMed  Google Scholar 

  42. Solari V, Piotrowska AP, Puri P. Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol. 2003;170:2420.

    Article  PubMed  Google Scholar 

  43. Murakumo M, Nonomura K, Yamashita T, et al. Structural changes of collagen components and diminution of nerves in congenital ureteropelvic junction obstruction. J Urol. 1997;157:1963.

    Article  CAS  PubMed  Google Scholar 

  44. Vaughan ED Jr, Shenasky JHI, Gillenwater JY. Mechanism of acute hemodynamic response to ureteral occlusion. Invest Urol. 1971;9:109.

    PubMed  Google Scholar 

  45. Mardis HK, Kroeger RM, Hepperlen TW, Mazer MJ, Kammandel H. Polyethelene double-pigtail ureteral stents. Urol Clin N Am. 1982;9:95–101.

    CAS  Google Scholar 

  46. Payne SR, Ramsay JW. The effects of double J stent of renal pelvic dynamics in the pig. J Urol. 1988;140:637–41.

    Article  CAS  PubMed  Google Scholar 

  47. Olweny EO, Portis AJ, Afane JS, et al. Flow characteristics of 3 unique ureteral stents: investigation of a Poiseuille flow pattern. J Urol. 2000;164:2099–103.

    Article  CAS  PubMed  Google Scholar 

  48. Roshani H, Dabhoiwala NF, Dijkhus T, et al. Pharmacological modulation of ureteral peristalsis in a chronically instrumented conscious pig model. I: Effect of cholinergic stimulation and inhibition. J Urol. 2003;170:264.

    Article  CAS  PubMed  Google Scholar 

  49. Ramsay JWA, Payne SR, Gosling PT, Whitfield HN, Wickham JEA, Levison DA. The effects of double J stenting on unobstructed ureters. Br J Urol. 1985;57:630–4.

    Article  CAS  PubMed  Google Scholar 

  50. Culkin DJ, Zitman R, Bundrick W, et al. Anatomic, functional and pathologic changes from internal ureteral stent placement. Urology. 1992;40:385–90.

    Article  CAS  PubMed  Google Scholar 

  51. Patel U, Kellett MJ. Ureteric drainage and peristalsis after stenting studied using colour doppler ultrasound. Br J Urol. 1996;77(4):530–5.

    Article  CAS  PubMed  Google Scholar 

  52. El-Deen ME, Khalaf I, Rahim FA. Effect of internal ureteral stenting of normal ureter on the upper urinary tract: an experimental study. J Endourol. 1993;7(5):399–405.

    Article  CAS  PubMed  Google Scholar 

  53. Kaplan N, Elkin M, Sharkey J. Ureteral peristalsia and the autonomic nervous system. Invest Urol. 1968;5:468–82.

    CAS  PubMed  Google Scholar 

  54. Gould DW, Hsieh ACL, Tinckler LF. Behavior of isolated water-buffalo ureter. J Physiol. 1955;129:425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakada SY, Jerde TJ, Jacobson LM, et al. Cyclooxygenase-2 expression is up-regulated in obstructed human ureter. J Urol. 2002;168:1226.

    Article  CAS  PubMed  Google Scholar 

  56. Cole RS, Fry CH, Shuttleworth KE. The action of prostaglandins on isolated human ureteric smooth muscle. Br J Urol. 1988;61:19–26.

    Article  CAS  PubMed  Google Scholar 

  57. Mastrangelo D, Wisard M, Rohner S, Leisinger H, Iselin CE. Diclofenac and NS-398, a selective cyclooxygenase-2 inhibitor, decrease agonist-induced contractions of the pig isolated ureter. Urol Res. 2000;28:376–82.

    Article  CAS  PubMed  Google Scholar 

  58. Nakada SY, Jerde TJ, Bjorling DE, et al. Selective cyclooxygenase-2 inhibitors reduce ureteral contraction in vivo: a better alternative for renal colic? J Urol. 2000;163:607.

    Article  CAS  PubMed  Google Scholar 

  59. Kapoor DA, Weitzel S, Mowad JJ, et al. Use of indomethacin suppositories in the prophylaxis of recurrent ureteral colic. J Urol. 1989;142:1428–30.

    Article  CAS  PubMed  Google Scholar 

  60. Laerum E, Ommundsen OE, Gronseth JE, et al. Oral diclofenac in the prophylactic treatment of recurrent renal colic. Eur Urol. 1995;28:108–11.

    Article  CAS  PubMed  Google Scholar 

  61. Cardona M, Eduardo C, García-Perdomo HA. Efficacy of phosphodiesterase type 5 inhibitors for the treatment of distal ureteral calculi: a systematic review and meta-analysis. Investig Clin Urol. 2017;58(2):82–9.

    Article  Google Scholar 

  62. Gratzke C, et al. In vitro effects of PDE5 inhibitors sildenafil, vardenafil and tadalafil on isolated human ureteral smooth muscle: a basic research approach. Urol Res. 2007;35(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  63. Taher A, Schulz-Knappe P, Meyer M, Truss W, Forssmann G, Stief C, Jonas G. Characterization of cyclic nucleotide phosphodiesterase isoenzymes in the human ureter and their functional role in vitro. World J Urol. 1994;12(5):286–91.

    Article  CAS  PubMed  Google Scholar 

  64. Becker AJ, Stief CG, Meyer M, Truss M, Forssman WG. The effect of the specific phosphodiesterase-IV-inhibitor rolipram on the ureteral peristalsis of the rabbit in vitro and in vivo. J Urol. 1998;160:920–5.

    Article  CAS  PubMed  Google Scholar 

  65. Nuss GR, Rackley JD, Assimos DG. Adjunctive therapy to promote stone passage. Rev Urol. 2005;7(2):67–74.

    PubMed  PubMed Central  Google Scholar 

  66. Golenhofen K, Lammel E. Selective suppression of some components of spontaneous activity in various types of smooth muscle by iproveratril (Verapamil). Pfleugers Arch. 1972;331:233–43.

    Article  CAS  Google Scholar 

  67. Forman A, Andersson KE, Henriksson I, et al. Effects of nifedipine on the smooth muscle of the human urinary tract in vitro and in vivo. Acta Pharmacol Toxicol (Copenh). 1978;43:111–8.

    Article  CAS  Google Scholar 

  68. Hertle L, Nawrath H. Calcium channel blockade in smooth muscle of the human upper urinary tract. II. Effects on norephinephrine-induced activation. J Urol. 1984;132:1270.

    Article  CAS  PubMed  Google Scholar 

  69. Borghi L, Meschi T, Amato F, et al. Nifedipine and methylprednisolone in facilitating ureteral stone passage: a randomized, double-blind, placebo-controlled study. J Urol. 1994;152:1095–8.

    Article  CAS  PubMed  Google Scholar 

  70. Cooper JT, Stack GM, Cooper TP. Intensive medical management of ureteral calculi. Urology. 2000;56:575–8.

    Article  CAS  PubMed  Google Scholar 

  71. Porpiglia F, Destenanis P, Fiori C, et al. Effectiveness of nifedipine and deflazacort in the management of distal ureter stones. Urology. 2000;56:579.

    Article  CAS  PubMed  Google Scholar 

  72. Caravati EM, Runge JW, Bossart RJ, et al. Nifedipine for the relief of renal colic: a double blind, placebo-controlled clinical trial. Ann Emerg Med. 1989;18:352.

    Article  CAS  PubMed  Google Scholar 

  73. Hollingsworth JM, Rogers MA, Kaufman SR, Bradford TJ, Saint S. Medical therapy to facilitate urinary stone passage: a meta-analysis. Lancet. 2006;368:1171–9.

    Article  PubMed  Google Scholar 

  74. Karabacak OR, Yilmazer D, Ozturk U, et al. The presence and distribution of alpha adrenergic receptors in human renal pelvis and calyces. Urolithiasis. 2013;41:385.

    Article  CAS  PubMed  Google Scholar 

  75. Yilmaz E, Batislam E, Bassar MM, Tuglu D, Ferhat M, et al. The comparison and efficacy of 3 different alpha1-adrenergic blockers for distal ureteral stones. J Urol. 2005;173:2010–2.

    Article  CAS  PubMed  Google Scholar 

  76. Gravina GL, Costa AM, Ronchi P, Galatioto GP, Angelucci A, et al. Tamsulosin treatment increases clinical success rate of single extracorporeal shock wave lithotripsy of renal stones. Urology. 2005;66:24.

    Article  PubMed  Google Scholar 

  77. Resim S, Ekerbicer HC, CIftci A. Role of tamsulosin in treatment of patients with steinstrasse developing after extracorporeal shock wave lithotripsy. Urology. 2005;66:945.

    Article  PubMed  Google Scholar 

  78. Dellabella M, Milanese G, Muzzonigro G. Efficacy of tamsulosin in the medical management of juxtavesical ureteral stones. J Urol. 2003;170:2202.

    Article  CAS  PubMed  Google Scholar 

  79. Dellabella M, Milanese G, Muzzonigro G. Randomized trial of the efficacy of tamsulosin, nifedipine and phloroglucinol in medical expulsive therapy for distal ureteral calculi. J Urol. 2005;174:167.

    Article  CAS  PubMed  Google Scholar 

  80. Dellabella M, Milanese G, Muzzonigro G. Medical-expulsive therapy for distal ureterolithiasisi: randomized prospective study on role of corticosteroids used in compination with tamsulosin-simplified treatment regimen and health-related quality of life. Urology. 2005;666:712.

    Article  Google Scholar 

  81. Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M. 2007 guideline for the management of ureteral calculi. J Urol. 2007;178:2418–34.

    Article  PubMed  Google Scholar 

  82. Seitz C, Liatsikos E, Porpiglia F, et al. Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol. 2009;56:455–71.

    Article  PubMed  Google Scholar 

  83. Campschroer T, Zhu Y, Duijvesz D, et al. Alpha-blockers as medical expulsive therapy for ureteral stones. Cochrane Database Syst Rev. 2014;4:CD008509.

    Google Scholar 

  84. Pickard R, et al. Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. The Lancet. 2015;386(9991):341–9.

    Article  Google Scholar 

  85. Zargar-Shoshtari K, Sharma P, Zargar H. Re: medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Eur Urol. 2015;68(5):910–1.

    Article  PubMed  Google Scholar 

  86. Van Asseldonk B, Elterman DS. Medical expulsive therapy for ureteric colic: new hard evidence: commentary on: medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Urology. 2015;86(4):649–50.

    Article  PubMed  Google Scholar 

  87. Regoli D, Nguyen K, Calo G. Neurokinin receptors. Comparison of data from classical pharmacology, binding, and molecular biology. Ann N Y Acad Sci. 1997;812:144–6.

    Article  CAS  PubMed  Google Scholar 

  88. Stief CG, Uckert S, Truss MC, Becker AJ, Machtens S, Jonas U. A possible role for nitric oxide in the regulation of human ureteral smooth muscle tone in vitro. Urol Res. 1996;24:333–7.

    Article  CAS  PubMed  Google Scholar 

  89. Iselin CE, Alm P, Schaad NC, Larsson B, Graber P, Anderson KE. Localization of nitric oxide synthase and haemoxygenase, and functional effects of nitric oxide and carbon monoxide in the pig and human intravesical ureter. Neururol Urodyn. 1997;16:209–27.

    Article  CAS  Google Scholar 

  90. Yucel S, Baskin LS. Neuroanatomy of the ureterovesical junction: clinical implications. J Urol. 2003;170:945–8.

    Article  PubMed  Google Scholar 

  91. Tindall AR. Preliminary observations on the mechanical and electrical activity of the rat ureter. J Physiol. 1972;223:633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smita K, Kumar VS, Premendran J, et al. Goat ureter—an alternative model for measuring ureteral peristalsis. J Smooth Muscle Res. 2006;42:117.

    Article  PubMed  Google Scholar 

  93. Primbs K. Untersuchungen uber die Einwirkung von Bakterientoxinen auf der uberlebenden Meerschweinchenureter. Z Urol Chir. 1913;1:600.

    Google Scholar 

  94. Ross JA, Edmond P, Kirkland IS. Behavior of the human ureter in health and disease. Edinburgh: Churchill Livingstone; 1972.

    Google Scholar 

  95. Makker SP, Tucker AS, Izant RJ Jr, et al. Nonobstructive hydronephrosis and hydroureter associated with peritonitis. N Engl J Med. 1972;287:535.

    Article  CAS  PubMed  Google Scholar 

  96. Akimoto M, Biancani P, Weiss RM. Comparative pressure-length-diameter relationships of neonatoal and adult rabbit ureters. Invest Urol. 1977;14:297.

    CAS  PubMed  Google Scholar 

  97. Wheeler MA, Housman A, Cho YH, Weiss RM. Age dependence of adenylate cyclase activity in guinea pig ureter homogenate. J Pharmacol Exp Ther. 1986;239:99.

    CAS  PubMed  Google Scholar 

  98. Roberts JA. Hydronephrosis of pregnancy. Urology. 1976;8:1.

    Article  CAS  PubMed  Google Scholar 

  99. Swift S, Ostergard D. Effects of progesterone on the urinary tract. Int Urogynecol J. 1993;4(4):232–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Y. Nakada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastiampillai, R., Kaplon, D.M., Nakada, S.Y. (2020). Ureteral Physiology and Pharmacology. In: Chapple, C., Steers, W., Evans, C. (eds) Urologic Principles and Practice. Springer Specialist Surgery Series. Springer, Cham. https://doi.org/10.1007/978-3-030-28599-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28599-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28598-2

  • Online ISBN: 978-3-030-28599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics