Skip to main content

Endometrium Gene Expression and Epigenetic Regulation in Reproductive Failure

  • Chapter
  • First Online:
  • 417 Accesses

Abstract

Genomic study of the endometrium may shed light on the regulation of embryo implantation and how the process is disrupted in women with reproductive failure. There are several essential requirements in planning a genomic study of the endometrium, including precise timing of endometrial biopsy specimens and the recruitment of not only subjects with a well-defined category of reproductive failure but also a separate population of fertile control subjects. Genomic regulation of implantation may be achieved at various levels, and the measurement of each requires a different analytical method. Current literature data will be summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017;153(6):749–58.

    Article  CAS  PubMed  Google Scholar 

  3. Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60, e1–15.

    Article  CAS  PubMed  Google Scholar 

  4. Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99(12):E2744–53.

    Article  CAS  PubMed  Google Scholar 

  5. Qiao J, Wang L, Li R, Zhang X. Microarray evaluation of endometrial receptivity in Chinese women with polycystic ovary syndrome. Reprod Biomed Online. 2008;17(3):425–35.

    Article  CAS  PubMed  Google Scholar 

  6. Koot YE, van Hooff SR, Boomsma CM, van Leenen D, Groot Koerkamp MJ, Goddijn M, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep. 2016;6:19411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Gomez E, Fernandez-Sanchez M, Carranza F, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril. 2013;100(3):818–24.

    Article  PubMed  Google Scholar 

  8. Ledee N, Munaut C, Aubert J, Serazin V, Rahmati M, Chaouat G, et al. Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J Pathol. 2011;225(4):554–64.

    Article  PubMed  Google Scholar 

  9. Kosova G, Stephenson MD, Lynch VJ, Ober C. Evolutionary forward genomics reveals novel insights into the genes and pathways dysregulated in recurrent early pregnancy loss. Hum Reprod. 2015;30(3):519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Othman R, Omar MH, Shan LP, Shafiee MN, Jamal R, Mokhtar NM. Microarray profiling of secretory-phase endometrium from patients with recurrent miscarriage. Reprod Biol. 2012;12(2):183–99.

    Article  PubMed  Google Scholar 

  11. Mirkin S, Nikas G, Hsiu JG, Diaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004;89(11):5742–52.

    Article  CAS  PubMed  Google Scholar 

  12. Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T, Hedon B, et al. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24(6):1436–45.

    Article  CAS  PubMed  Google Scholar 

  13. Tuckerman E, Mariee N, Prakash A, Li TC, Laird S. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol. 2010;87(1–2):60–6.

    Article  CAS  PubMed  Google Scholar 

  14. Tuckerman E, Laird SM, Prakash A, Li TC. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Hum Reprod. 2007;22(8):2208–13.

    Article  CAS  PubMed  Google Scholar 

  15. Germeyer A, Savaris RF, Jauckus J, Lessey B. Endometrial beta3 integrin profile reflects endometrial receptivity defects in women with unexplained recurrent pregnancy loss. Reprod Biol Endocrinol. 2014;12:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Coughlan C, Sinagra M, Ledger W, Li TC, Laird S. Endometrial integrin expression in women with recurrent implantation failure after in vitro fertilization and its relationship to pregnancy outcome. Fertil Steril. 2013;100(3):825–30.

    Article  CAS  PubMed  Google Scholar 

  17. Mariee N, Li TC, Laird SM. Expression of leukaemia inhibitory factor and interleukin 15 in endometrium of women with recurrent implantation failure after IVF; correlation with the number of endometrial natural killer cells. Hum Reprod. 2012;27(7):1946–54.

    Article  CAS  PubMed  Google Scholar 

  18. Xu B, Sun X, Li L, Wu L, Zhang A, Feng Y. Pinopodes, leukemia inhibitory factor, integrin-beta3, and mucin-1 expression in the peri-implantation endometrium of women with unexplained recurrent pregnancy loss. Fertil Steril. 2012;98(2):389–95.

    Article  CAS  PubMed  Google Scholar 

  19. Karaer A, Cigremis Y, Celik E, Urhan GR. Prokineticin 1 and leukemia inhibitory factor mRNA expression in the endometrium of women with idiopathic recurrent pregnancy loss. Fertil Steril. 2014;102(4):1091–5 e1.

    Article  CAS  PubMed  Google Scholar 

  20. Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Teklenburg G, Salker M, Heijnen C, Macklon NS, Brosens JJ. The molecular basis of recurrent pregnancy loss: impaired natural embryo selection. Mol Hum Reprod. 2010;16(12):886–95.

    Article  CAS  PubMed  Google Scholar 

  22. Macklon NS, Brosens JJ. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91(4):98.

    Article  PubMed  CAS  Google Scholar 

  23. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohlin FC, Mercier E, Fremeaux-Bacchi V, Liszewski MK, Atkinson JP, Gris JC, et al. Analysis of genes coding for CD46, CD55, and C4b-binding protein in patients with idiopathic, recurrent, spontaneous pregnancy loss. Eur J Immunol. 2013;43(6):1617–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salmon JE, Heuser C, Triebwasser M, Liszewski MK, Kavanagh D, Roumenina L, et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med. 2011;8(3):e1001013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update. 2014;20(4):517–29.

    Article  CAS  PubMed  Google Scholar 

  27. Thie M, Denker H-W. In vitro studies on endometrial adhesiveness for trophoblast: cellular dynamics in uterine epithelial cells. Cells Tissues Organs. 2002;172(3):237–52.

    Article  PubMed  Google Scholar 

  28. Nawy T. Single-cell sequencing. Nat Methods. 2014;11(1):18.

    Article  CAS  PubMed  Google Scholar 

  29. Lasken RS. Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol. 2007;10(5):510–6.

    Article  CAS  PubMed  Google Scholar 

  30. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  31. Shintaku H, Nishikii H, Marshall LA, Kotera H, Santiago JG. On-chip separation and analysis of RNA and DNA from single cells. Anal Chem. 2014;86(4):1953–7.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, et al. Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol. 2006;24(6):680–6.

    Article  CAS  PubMed  Google Scholar 

  33. Chiou PY, Ohta AT, Wu MC. Massively parallel manipulation of single cells and microparticles using optical images. Nature. 2005;436(7049):370–2.

    Article  CAS  PubMed  Google Scholar 

  34. Hosic S, Murthy SK, Koppes AN. Microfluidic sample preparation for single cell analysis. Anal Chem. 2016;88(1):354–80.

    Article  CAS  PubMed  Google Scholar 

  35. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018;18(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  36. Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. 2017;17(9):557–69.

    Article  CAS  PubMed  Google Scholar 

  37. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015;43(9):e60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vassena R, Eguizabal C, Heindryckx B, Sermon K, Simon C, van Pelt AM, et al. Stem cells in reproductive medicine: ready for the patient? Hum Reprod. 2015;30(9):2014–21.

    Article  CAS  PubMed  Google Scholar 

  41. Krjutskov K, Katayama S, Saare M, Vera-Rodriguez M, Lubenets D, Samuel K, et al. Single-cell transcriptome analysis of endometrial tissue. Hum Reprod. 2016;31(4):844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiling F. Historical study: Johann Gregor Mendel 1822-1884. Am J Med Genet. 1991;40(1):1–25; discussion 6.

    Article  CAS  PubMed  Google Scholar 

  43. Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  44. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49.

    PubMed  PubMed Central  Google Scholar 

  46. Horsthemke B, Ludwig M. Assisted reproduction: the epigenetic perspective. Hum Reprod Update. 2005;11(5):473–82.

    Article  PubMed  Google Scholar 

  47. Das L, Parbin S, Pradhan N, Kausar C, Patra SK. Epigenetics of reproductive infertility. Front Biosci (Schol Ed). 2017;9:509–35.

    Article  Google Scholar 

  48. Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review). Mol Med Rep. 2012;5(4):883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Houshdaran S, Zelenko Z, Irwin JC, Giudice LC. Human endometrial DNA methylome is cycle-dependent and is associated with gene expression regulation. Mol Endocrinol. 2014;28(7):1118–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod. 2009;24(5):1126–32.

    Article  CAS  PubMed  Google Scholar 

  51. Kukushkina V, Modhukur V, Suhorutsenko M, Peters M, Magi R, Rahmioglu N, et al. DNA methylation changes in endometrium and correlation with gene expression during the transition from pre-receptive to receptive phase. Sci Rep. 2017;7(1):3916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology. 2009;150(3):1466–72.

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, Tan YJ, Wang M, Chen YF, Li XY. DNA methylation inhibitor 5-Aza-2’-deoxycytidine modulates endometrial receptivity through upregulating HOXA10 expression. Reprod Sci. 2019;26(6):839–46.

    Article  PubMed  CAS  Google Scholar 

  54. Xiong Y, Wang J, Liu L, Chen X, Xu H, Li TC, et al. Effects of high progesterone level on the day of human chorionic gonadotrophin administration in in vitro fertilization cycles on epigenetic modification of endometrium in the peri-implantation period. Fertil Steril. 2017;108(2):269–76 e1.

    Article  CAS  PubMed  Google Scholar 

  55. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  CAS  PubMed  Google Scholar 

  56. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  57. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003;983:84–100.

    Article  CAS  PubMed  Google Scholar 

  58. Uchida H, Maruyama T, Arase T, Ono M, Nagashima T, Masuda H, et al. Histone acetylation in reproductive organs: significance of histone deacetylase inhibitors in gene transcription. Reprod Med Biol. 2005;4(2):115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Uchida H, Maruyama T, Nagashima T, Ono M, Masuda H, Arase T, et al. Human endometrial cytodifferentiation by histone deacetylase inhibitors. Hum Cell. 2006;19(1):38–42.

    Article  PubMed  Google Scholar 

  60. Krusche CA, Vloet AJ, Classen-Linke I, von Rango U, Beier HM, Alfer J. Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas. Hum Reprod. 2007;22(11):2956–66.

    Article  CAS  PubMed  Google Scholar 

  61. Estella C, Herrer I, Atkinson SP, Quinonero A, Martinez S, Pellicer A, et al. Inhibition of histone deacetylase activity in human endometrial stromal cells promotes extracellular matrix remodelling and limits embryo invasion. PLoS One. 2012;7(1):e30508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maass N, Biallek M, Rosel F, Schem C, Ohike N, Zhang M, et al. Hypermethylation and histone deacetylation lead to silencing of the maspin gene in human breast cancer. Biochem Biophys Res Commun. 2002;297(1):125–8.

    Article  CAS  PubMed  Google Scholar 

  63. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  64. Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet. 2010;11(8):559–71.

    Article  CAS  PubMed  Google Scholar 

  65. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  CAS  PubMed  Google Scholar 

  66. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  67. Creighton CJ, Benham AL, Zhu H, Khan MF, Reid JG, Nagaraja AK, et al. Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One. 2010;5(3):e9637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lam EW, Shah K, Brosens JJ. The diversity of sex steroid action: the role of micro-RNAs and FOXO transcription factors in cycling endometrium and cancer. J Endocrinol. 2012;212(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  69. Ramon LA, Braza-Boils A, Gilabert-Estelles J, Gilabert J, Espana F, Chirivella M, et al. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod. 2011;26(5):1082–90.

    Article  CAS  PubMed  Google Scholar 

  70. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.

    Article  CAS  PubMed  Google Scholar 

  71. Petracco R, Grechukhina O, Popkhadze S, Massasa E, Zhou Y, Taylor HS. MicroRNA 135 regulates HOXA10 expression in endometriosis. J Clin Endocrinol Metab. 2011;96(12):E1925–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1):179–83.

    Article  CAS  PubMed  Google Scholar 

  73. Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991;64(6):1045–6.

    Article  CAS  PubMed  Google Scholar 

  74. Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991;7(2):45–9.

    Article  CAS  PubMed  Google Scholar 

  75. Regha K, Latos PA, Spahn L. The imprinted mouse Igf2r/Air cluster--a model maternal imprinting system. Cytogenet Genome Res. 2006;113(1–4):165–77.

    Article  CAS  PubMed  Google Scholar 

  76. Tanos V, Ariel I, Prus D, De-Groot N, Hochberg A. H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Int J Gynecol Cancer. 2004;14(3):521–5.

    Article  CAS  PubMed  Google Scholar 

  77. Lee RS, Depree KM, Davey HW. The sheep (Ovis aries) H19 gene: genomic structure and expression patterns, from the preimplantation embryo to adulthood. Gene. 2002;301(1–2):67–77.

    Article  CAS  PubMed  Google Scholar 

  78. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372–3.

    Article  CAS  PubMed  Google Scholar 

  79. Yan PS, Chen CM, Shi H, Rahmatpanah F, Wei SH, Huang TH. Applications of CpG island microarrays for high-throughput analysis of DNA methylation. J Nutr. 2002;132(8 Suppl):2430S–4S.

    Article  CAS  PubMed  Google Scholar 

  80. Schilling E, Rehli M. Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics. 2007;90(3):314–23.

    Article  CAS  PubMed  Google Scholar 

  81. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Butcher LM, Beck S. AutoMeDIP-seq: a high-throughput, whole genome, DNA methylation assay. Methods. 2010;52(3):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Begemann M, Leisten I, Soellner L, Zerres K, Eggermann T, Spengler S. Use of multilocus methylation-specific single nucleotide primer extension (MS-SNuPE) technology in diagnostic testing for human imprinted loci. Epigenetics. 2012;7(5):473–81.

    Article  CAS  PubMed  Google Scholar 

  84. Konishi Y, Hayashi H, Suzuki H, Yamamoto E, Sugisaki H, Higashimoto H. Comparative analysis of methods to determine DNA methylation levels of a tumor-related microRNA gene. Anal Biochem. 2015;484:66–71.

    Article  CAS  PubMed  Google Scholar 

  85. Sandmann T, Jakobsen JS, Furlong EE. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat Protoc. 2006;1(6):2839–55.

    Article  CAS  PubMed  Google Scholar 

  86. O’Neill LP, Turner BM. Immunoprecipitation of chromatin. Methods Enzymol. 1996;274:189–97.

    Article  PubMed  Google Scholar 

  87. Zhu J, Fu H, Wu Y, Zheng X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci. 2013;56(10):876–85.

    Article  CAS  PubMed  Google Scholar 

  88. Liu CG, Spizzo R, Calin GA, Croce CM. Expression profiling of microRNA using oligo DNA arrays. Methods. 2008;44(1):22–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin Chiu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, J., Zhang, R., Wang, C.C., Li, T.C. (2020). Endometrium Gene Expression and Epigenetic Regulation in Reproductive Failure. In: Kwak-Kim, J. (eds) Endometrial Gene Expression. Springer, Cham. https://doi.org/10.1007/978-3-030-28584-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28584-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28583-8

  • Online ISBN: 978-3-030-28584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics