Overview of LifeCLEF 2019: Identification of Amazonian Plants, South & North American Birds, and Niche Prediction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11696)


Building accurate knowledge of the identity, the geographic distribution and the evolution of living species is essential for a sustainable development of humanity, as well as for biodiversity conservation. Unfortunately, such basic information is often only partially available for professional stakeholders, teachers, scientists and citizens, and often incomplete for ecosystems that possess the highest diversity. In this context, an ultimate ambition is to set up innovative information systems relying on the automated identification and understanding of living organisms as a means to engage massive crowds of observers and boost the production of biodiversity and agro-biodiversity data. The LifeCLEF 2019 initiative proposes three data-oriented challenges related to this vision, in the continuity of the previous editions but with several consistent novelties intended to push the boundaries of the state-of-the-art in several research directions. This paper describes the methodology of the conducted evaluations as well as the synthesis of the main results and lessons learned.



We would like to thank very warmly Julien Engel, Rémi Girault, Jean-François Molino and the two other expert botanists who agreed to participate in the task on plant identification. We also we would like to thank the University of Montpellier and the Floris’Tic project (ANRU) who contributed to the funding of the 2019-th edition of LifeCLEF.


  1. 1.
    Atodiresei, C.S., Iftene, A.: Location-based species recommendation - GeoLifeCLEF 2019 challenge. In: CLEF Working Notes 2019 (2019)Google Scholar
  2. 2.
    Botella, C.: A compilation of environmental geographic rasters for SDM covering France (version 1) (data set). Zenodo (2019).
  3. 3.
    Botella, C., Bonnet, P., Joly, A., Lombardo, J.C., Affouard, A.: Pl@ntnet queries 2017–2018 in France. Zenodo (2019).
  4. 4.
    Botella, C., Servajean, M., Bonnet, P., Joly, A.: Overview of GeoLifeCLEF 2019: plant species prediction using environment and animal occurrences. In: CLEF Working Notes 2019 (2019)Google Scholar
  5. 5.
    Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: bird species recognition. In: 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. ISSNIP 2007 (2007)Google Scholar
  6. 6.
    Koh, C.-Y., Chang, J.-Y., C.L.T.D.Y.H., Hsieh, H.H.: Bird sound classification using convolutional neural networks. In: CLEF Working Notes 2019 (2019)Google Scholar
  7. 7.
    Chulif, S., Jing Heng, K., Wei Chan, T., Al Monnaf, M.A., Chang, Y.L.: Plant identification on Amazonian and Guiana shield flora: neuon submission to LifeCLEF 2019 plant. In: CLEF (Working Notes) (2019)Google Scholar
  8. 8.
    Costandache, M.A.: Bird species identification using neural networks. In: CLEF Working Notes 2019 (2019)Google Scholar
  9. 9.
    Dat Nguyen Thanh, G.Q., Goeuriot, L.: Non-local DenseNet for plant CLEF 2019 contest. In: CLEF (Working Notes) (2019)Google Scholar
  10. 10.
    Gaston, K.J., O’Neill, M.A.: Automated species identification: why not? Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1444), 655–667 (2004) CrossRefGoogle Scholar
  11. 11.
    Ghazi, M.M., Yanikoglu, B., Aptoula, E.: Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235, 228–235 (2017)CrossRefGoogle Scholar
  12. 12.
    Glotin, H., Clark, C., LeCun, Y., Dugan, P., Halkias, X., Sueur, J.: Proceedings of 1st workshop on Machine Learning for Bioacoustics - ICML4B. ICML, Atlanta USA (2013).
  13. 13.
    Goëau, H., Bonnet, P., Joly, A.: Plant identification based on noisy web data: the amazing performance of deep learning (LifeCLEF 2017). In: CLEF 2017-Conference and Labs of the Evaluation Forum, pp. 1–13 (2017)Google Scholar
  14. 14.
    Goëau, H., Bonnet, P., Joly, A.: Plant identification based on noisy web data: the amazing performance of deep learning (LifeCLEF 2017). In: Working Notes of CLEF 2017 (Cross Language Evaluation Forum) (2017)Google Scholar
  15. 15.
    Goëau, H., Bonnet, P., Joly, A.: Overview of ExpertLifeCLEF 2018: how far automated identification systems are from the best experts? In: CLEF Working Notes 2018 (2018)Google Scholar
  16. 16.
    Goëau, H., Bonnet, P., Joly, A.: Overview of LifeCLEF plant identification task 2019: diving into data deficient tropical countries. In: Working Notes of CLEF 2019 (Cross Language Evaluation Forum) (2019)Google Scholar
  17. 17.
    Goëau, H., et al.: The imageclef 2013 plant identification task. In: CLEF 2013, Valencia (2013)Google Scholar
  18. 18.
    Goëau, H., et al.: The ImageCLEF 2011 plant images classification task. In: CLEF 2011 (2011)Google Scholar
  19. 19.
    Goëau, H., et al.: ImageCLEF 2012 plant images identification task. In: CLEF 2012, Rome (2012)Google Scholar
  20. 20.
    Goëau, H., et al.: The ImageCLEF plant identification task 2013. In: Proceedings of the 2nd ACM International Workshop on Multimedia Analysis for Ecological Data, pp. 23–28. ACM (2013)Google Scholar
  21. 21.
    Bai, J., Wang, B., Chen, C., Fu, Z.-H., Chen, J.: Inception-V3 based method of LifeCLEF 2019 bird recognition. In: CLEF Working Notes 2019 (2019)Google Scholar
  22. 22.
    Joly, A., et al.: Interactive plant identification based on social image data. Ecol. Inform. 23, 22–34 (2014)CrossRefGoogle Scholar
  23. 23.
    Kahl, S., Stöter, F.R., Glotin, H., Planqué, R., Vellinga, W.P., Joly, A.: Overview of BirdCLEF 2019: large-scale bird recognition in Soundscapes. In: CLEF (Working Notes) (2019)Google Scholar
  24. 24.
    Krause, J., et al.: The unreasonable effectiveness of noisy data for fine-grained recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 301–320. Springer, Cham (2016). Scholar
  25. 25.
    Krishna, N., Kumar, P., Kaushik, R.R., Mirunalini, P., Chandrabose, A., Jaisakthi, S.M.: Species recommendation using machine learning - GeoLifeCLEF2019. In: CLEF Working Notes 2019 (2019)Google Scholar
  26. 26.
    Lasseck, M.: Bird species identification in Soundscapes. In: CLEF Working Notes 2019 (2019)Google Scholar
  27. 27.
    Lee, D.J., Schoenberger, R.B., Shiozawa, D., Xu, X., Zhan, P.: Contour matching for a fish recognition and migration-monitoring system. In: Optics East, pp. 37–48. International Society for Optics and Photonics (2004)Google Scholar
  28. 28.
    Lee, S.H., Chan, C.S., Remagnino, P.: Multi-organ plant classification based on convolutional and recurrent neural networks. IEEE Trans. Image Process. 27(9), 4287–4301 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Monestiez, P., Botella, C.: Species recommendation using intensity models and sampling bias correction (GeoLifeCLEF 2019: Lof\_of\_lof team). In: CLEF Working Notes 2019 (2019)Google Scholar
  30. 30.
    Negri, M., Servajean, M., Joly, A.: Plant prediction from CNN model trained with other kingdom species (GeoLifeCLEF 2019: LIRMM team). In: CLEF Working Notes 2019 (2019)Google Scholar
  31. 31.
    NIPS International Conference: Proceedings of Neural Information Processing Scaled for Bioacoustics, from Neurons to Big Data (2013).
  32. 32.
    Picek, L.,Šulc, M., Matas, J.: Recognition of the Amazonian flora by inception networks with test-time class prior estimation. In: CLEF (Working Notes) (2019)Google Scholar
  33. 33.
    Si-Moussi, S., Hedde, M., Daufresne, T.: Species recommendation using environment and biotic associations. In: CLEF Working Notes 2019 (2019)Google Scholar
  34. 34.
    Towsey, M., Planitz, B., Nantes, A., Wimmer, J., Roe, P.: A toolbox for animal call recognition. Bioacoustics 21(2), 107–125 (2012)CrossRefGoogle Scholar
  35. 35.
    Trifa, V.M., Kirschel, A.N., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models. J. Acoust. Soc. Am. 123, 2424 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Inria, LIRMMMontpellierFrance
  2. 2.CIRAD, UMR AMAPMontpellierFrance
  3. 3.INRA, UMR AMAPMontpellierFrance
  4. 4.Univ. Toulon, Aix Marseille Univ., CNRS, LIS, DYNI SABIODMarseilleFrance
  5. 5.Xeno-canto FoundationVlielandThe Netherlands
  6. 6.HES-SOSierreSwitzerland
  7. 7.Chemnitz University of TechnologyChemnitzGermany
  8. 8.LIRMM, Université Paul Valéry, University of Montpellier, CNRSMontpellierFrance

Personalised recommendations