Skip to main content

Neutrophil Interaction with Emerging Oral Pathogens: A Novel View of the Disease Paradigm

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1197))

Abstract

Periodontitis is a multifactorial chronic inflammatory infectious disease that compromises the integrity of tooth-supporting tissues. The disease progression depends on the disruption of host–microbe homeostasis in the periodontal tissue. This disruption is marked by a shift in the composition of the polymicrobial oral community from a symbiotic to a dysbiotic, more complex community that is capable of evading killing while promoting inflammation. Neutrophils are the main phagocytic cell in the periodontal pocket, and the outcome of the interaction with the oral microbiota is an important determinant of oral health. Novel culture-independent techniques have facilitated the identification of new bacterial species at periodontal lesions and induced a reappraisal of the microbial etiology of periodontitis. In this chapter, we discuss how neutrophils interact with two emerging oral pathogens, Filifactor alocis and Peptoanaerobacter stomatis, and the different strategies deploy by these organisms to modulate neutrophil effector functions, with the goal to outline a new paradigm in our knowledge about neutrophil responses to putative periodontal pathogens and their contribution to disease progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., & Dewhirst, F. E. (2005). Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology, 43(11), 5721–5732.

    PubMed  PubMed Central  Google Scholar 

  • Abusleme, L., Dupuy, A. K., Dutzan, N., Silva, N., Burleson, J. A., Strausbaugh, L. D., et al. (2013). The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME Journal, 7(5), 1016–1025.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D., & Zychlinsky, A. (2012). Neutrophil function: From mechanisms to disease. Annual Review of Immunology, 30, 459–489.

    CAS  PubMed  Google Scholar 

  • Anderson, I. C., & Cairney, J. W. (2004). Diversity and ecology of soil fungal communities: Increased understanding through the application of molecular techniques. Environmental Microbiology, 6(8), 769–779.

    CAS  PubMed  Google Scholar 

  • Armstrong, C. L., Miralda, I., Neff, A. C., Tian, S., Vashishta, A., Perez, L., et al. (2016). Filifactor alocis promotes neutrophil degranulation and chemotactic activity. Infection and Immunity, 84(12), 3423–3433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong, C. L., Klaes, C. K., Vashishta, A., Lamont, R. J., & Uriarte, S. M. (2018). Filifactor alocis manipulates human neutrophils affecting their ability to release neutrophil extracellular traps induced by PMA. Innate Immunity, 24(4), 210–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aruni, A. W., Roy, F., & Fletcher, H. M. (2011). Filifactor alocis has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by Porphyromonas gingivalis. Infection and Immunity, 79(10), 3872–3886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aruni, A. W., Roy, F., Sandberg, L., & Fletcher, H. M. (2012). Proteome variation among Filifactor alocis strains. Proteomics, 12(22), 3343–3364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aruni, A. W., Mishra, A., Dou, Y., Chioma, O., Hamilton, B. N., & Fletcher, H. M. (2015). Filifactor alocis—a new emerging periodontal pathogen. Microbes and Infection, 17(7), 517–530.

    PubMed  PubMed Central  Google Scholar 

  • Babior, B. M., Lambeth, J. D., & Nauseef, W. (2002). The neutrophil NADPH oxidase. Archives of Biochemistry and Biophysics, 397(2), 342–344.

    CAS  PubMed  Google Scholar 

  • Barrientos, L., Marin-Esteban, V., de Chaisemartin, L., Le-Moal, V. L., Sandre, C., Bianchini, E., et al. (2013). An improved strategy to recover large fragments of functional human neutrophil extracellular traps. Frontiers in Immunology, 4, 166.

    PubMed  PubMed Central  Google Scholar 

  • Beiter, K., Wartha, F., Albiger, B., Normark, S., Zychlinsky, A., & Henriques-Normark, B. (2006). An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Current Biology, 16(4), 401–407.

    CAS  PubMed  Google Scholar 

  • Belambri, S. A., Rolas, L., Raad, H., Hurtado-Nedelec, M., Dang, P. M.-C., & El-Benna, J. (2018). NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits. European Journal of Clinical Investigation, 48(S2), e12951.

    PubMed  Google Scholar 

  • Berezow, A. B., & Darveau, R. P. (2011). Microbial shift and periodontitis. Periodontology 2000, 55(1), 36–47.

    PubMed  PubMed Central  Google Scholar 

  • Bingham, C. O. I., & Moni, M. (2013). Periodontal disease and rheumatoid arthritis: The evidence accumulates for complex pathobiologic interactions. Current Opinion in Rheumatology, 25(3), 345–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borregaard, N. (2010). Neutrophils, from marrow to microbes. Immunity, 33(5), 657–670.

    CAS  Google Scholar 

  • Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503–3521.

    CAS  PubMed  Google Scholar 

  • Borregaard, N., Sørensen, O. E., & Theilgaard-Mönch, K. (2007). Neutrophil granules: A library of innate immunity proteins. Trends in Immunology, 28(8), 340–345.

    CAS  PubMed  Google Scholar 

  • Bostanci, N., Ozturk, V. O., Emingil, G., & Belibasakis, G. N. (2013a). Elevated oral and systemic levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in periodontitis. Journal of Dental Research, 92, 161–165.

    CAS  PubMed  Google Scholar 

  • Bostanci, N., Thurnheer, T., Aduse-Opoku, J., Curtis, M. A., Zinkernagel, A. S., & Belibasakis, G. N. (2013b). Porphyromonas gingivalis regulates TREM-1 in human polymorphonuclear neutrophils via its gingipains. PLoS One, 8(10), e75784.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann, V., & Zychlinsky, A. (2012). Neutrophil extracellular traps: Is immunity the second function of chromatin? The Journal of Cell Biology, 198(5), 773–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532–1535.

    CAS  PubMed  Google Scholar 

  • Buchanan, J. T., Simpson, A. J., Aziz, R. K., Liu, G. Y., Kristian, S. A., Kotb, M., et al. (2006). DNase expression allows the pathogen group a Streptococcus to escape killing in neutrophil extracellular traps. Current Biology, 16(4), 396–400.

    CAS  PubMed  Google Scholar 

  • Cassatella, M. A. (1999). Neutrophil-derived proteins: Selling cytokines by the pound. Advances in Immunology, 73, 369–509.

    CAS  PubMed  Google Scholar 

  • Cato, E. P., Moore, L. V. H., & Moore, W. E. C. (1985). Fusobacterium alocis sp. nov. and Fusobacterium sulci sp. nov. from the human gingival sulcus. International Journal of Systematic Bacteriology, 35(4), 475–477.

    CAS  Google Scholar 

  • Chen, H., Liu, Y., Zhang, M., Wang, G., Qi, Z., Bridgewater, L., et al. (2015). A Filifactor alocis-centered co-occurrence group associates with periodontitis across different oral habitats. Scientific Reports, 5, 9053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, O. Z., & Palaniyar, N. (2013). NET balancing: A problem in inflammatory lung diseases. Frontiers in Immunology, 4, 1.

    PubMed  PubMed Central  Google Scholar 

  • Chertov, O., Yang, D., Howard, O. M. Z., & Oppenheim, J. J. (2000). Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunological Reviews, 177(1), 68–78.

    CAS  PubMed  Google Scholar 

  • Cooper, P. R., Palmer, L. J., & Chapple, I. L. (2013). Neutrophil extracellular traps as a new paradigm in innate immunity: Friend or foe? Periodontology 2000, 63(1), 165–197.

    PubMed  Google Scholar 

  • Costalonga, M., & Herzberg, M. C. (2014). The oral microbiome and the immunobiology of periodontal disease and caries. Immunology Letters, 162(2 Pt A), 22–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva, E. S., Feres, M., Figueiredo, L. C., Shibli, J. A., Ramiro, F. S., & Faveri, M. (2014). Microbiological diversity of peri-implantitis biofilm by Sanger sequencing. Clinical Oral Implants Research, 25(10), 1192–1199.

    PubMed  Google Scholar 

  • Dabdoub, S. M., Ganesan, S. M., & Kumar, P. S. (2016). Comparative metagenomics reveals taxonomically idiosyncratic yet functionally congruent communities in periodontitis. Scientific Reports, 6, 38993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlen, G., & Leonhardt, A. (2006). A new checkerboard panel for testing bacterial markers in periodontal disease. Oral Microbiology and Immunology, 21(1), 6–11.

    CAS  PubMed  Google Scholar 

  • Dahlen, G., Wikstrom, M., & Moller, A. (1983). Production of histolytic enzymes by a combination of oral bacteria with known pathogenicity. Journal of Dental Research, 62(10), 1041–1044.

    CAS  PubMed  Google Scholar 

  • Darveau, R. P. (2009). The oral microbial consortium’s interaction with the periodontal innate defense system. DNA and Cell Biology, 28(8), 389–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darveau, R. P. (2010). Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews. Microbiology, 8(7), 481–490.

    CAS  PubMed  Google Scholar 

  • Deng, W., Xi, D., Mao, H., & Wanapat, M. (2008). The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: A review. Molecular Biology Reports, 35(2), 265–274.

    CAS  PubMed  Google Scholar 

  • Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W. H., et al. (2010). The human oral microbiome. Journal of Bacteriology, 192(19), 5002–5017.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douglass, C. W. (2006). Risk assessment and management of periodontal disease. Journal of the American Dental Association (1939), 137, S27–S32.

    Google Scholar 

  • Downes, J., & Wade, W. G. (2006). Peptostreptococcus stomatis sp. nov., isolated from the human oral cavity. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 4), 751–754.

    CAS  PubMed  Google Scholar 

  • Duran-Pinedo, A. E., Yost, S., & Frias-Lopez, J. (2015). Small RNA transcriptome of the oral microbiome during periodontitis progression. Applied and Environmental Microbiology, 81(19), 6688–6699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edmisson, J. S., Tian, S., Armstrong, C. L., Vashishta, A., Klaes, C. K., Miralda, I., et al. (2018). Filifactor alocis modulates human neutrophil antimicrobial functional responses. Cellular Microbiology, 20(6), e12829.

    PubMed  PubMed Central  Google Scholar 

  • Eke, P. I., Thornton-Evans, G. O., Wei, L., Borgnakke, W. S., Dye, B. A., & Genco, R. J. (2018). Periodontitis in US adults: national health and nutrition examination survey 2009–2014. Journal of the American Dental Association (1939), 149(7), 576–88.e6.

    Google Scholar 

  • Feres, M., Cortelli, S. C., Figueiredo, L. C., Haffajee, A. D., & Socransky, S. S. (2004). Microbiological basis for periodontal therapy. Journal of Applied Oral Science, 12(4), 256–266.

    PubMed  Google Scholar 

  • Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007). Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology, 176(2), 231–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, R. M., & Vidwans, M. (2019). Mixed anaerobic thoracic empyema: The first report of Filifactor alocis causing extra-oral disease. New Microbes and New Infections, 29, 100528.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffen, A. L., Beall, C. J., Campbell, J. H., Firestone, N. D., Kumar, P. S., Yang, Z. K., et al. (2012). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME Journal, 6(6), 1176–1185.

    CAS  PubMed  Google Scholar 

  • Hajishengallis, G. (2013). Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends in Immunology, 35(1), 3–11.

    PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G. (2014). The inflammophilic character of the periodontitis-associated microbiota. Molecular Oral Microbiology, 29(6), 248–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G. (2015). Periodontitis: From microbial immune subversion to systemic inflammation. Nature Reviews. Immunology, 15(1), 30–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G., & Lambris, J. D. (2012). Complement and dysbiosis in periodontal disease. Immunobiology, 217(11), 1111–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G., & Lambris, J. D. (2016). More than complementing tolls: Complement–toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunological Reviews, 274(1), 233–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G., & Lamont, R. J. (2012). Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular Oral Microbiology, 27(6), 409–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G., & Lamont, R. J. (2016). Dancing with the stars: How choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends in Microbiology, 24(6), 477–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G., Moutsopoulos, N. M., Hajishengallis, E., & Chavakis, T. (2016). Immune and regulatory functions of neutrophils in inflammatory bone loss. Seminars in Immunology, 28(2), 146–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis, G., Kajikawa, T., Hajishengallis, E., Maekawa, T., Reis, E. S., Mastellos, D. C., et al. (2019). Complement-dependent mechanisms and interventions in periodontal disease. Frontiers in Immunology, 10, 406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jalava, J., & Eerola, E. (1999). Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: Proposal of Filifactor alocis (Cato, Moore and Moore) comb. nov. and Eubacterium sulci (Cato, Moore and Moore) comb. nov. International Journal of Systematic Bacteriology, 49(Pt 4), 1375–1379.

    CAS  PubMed  Google Scholar 

  • Jimenez Flores, E., Tian, S., Sizova, M., Epstein, S. S., Lamont, R. J., & Uriarte, S. M. (2017). Peptoanaerobacter stomatis primes human neutrophils and induces granule exocytosis. Infection and Immunity, 85(7), e01043–e01016.

    PubMed  PubMed Central  Google Scholar 

  • Jorth, P., Turner, K. H., Gumus, P., Nizam, N., Buduneli, N., & Whiteley, M. (2014). Metatranscriptomics of the human oral microbiome during health and disease. MBio, 5(2), e01012–e01014.

    PubMed  PubMed Central  Google Scholar 

  • Jusko, M., Miedziak, B., Ermert, D., Magda, M., King, B. C., Bielecka, E., et al. (2016). FACIN, a double-edged sword of the emerging periodontal pathogen Filifactor alocis: A metabolic enzyme moonlighting as a complement inhibitor. Journal of Immunology, 197(8), 3245–3259.

    CAS  Google Scholar 

  • Kebschull, M., Demmer, R. T., & Papapanou, P. N. (2010). “Gum Bug, Leave My Heart Alone!”—Epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. Journal of Dental Research, 89(9), 879–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology, 13(3), 159–175.

    CAS  PubMed  Google Scholar 

  • Krishnan, K., Chen, T., & Paster, B. J. (2017). A practical guide to the oral microbiome and its relation to health and disease. Oral Diseases, 23(3), 276–286.

    CAS  PubMed  Google Scholar 

  • Kumar, P. S., Griffen, A. L., Barton, J. A., Paster, B. J., Moeschberger, M. L., & Leys, E. J. (2003). New bacterial species associated with chronic periodontitis. Journal of Dental Research, 82(5), 338–344.

    CAS  PubMed  Google Scholar 

  • Kumar, P. S., Griffen, A. L., Moeschberger, M. L., & Leys, E. J. (2005). Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. Journal of Clinical Microbiology, 43(8), 3944–3955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, P. S., Leys, E. J., Bryk, J. M., Martinez, F. J., Moeschberger, M. L., & Griffen, A. L. (2006). Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. Journal of Clinical Microbiology, 44(10), 3665–3673.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont, R. J., & Hajishengallis, G. (2015). Polymicrobial synergy and dysbiosis in inflammatory disease. Trends in Molecular Medicine, 21(3), 172–183.

    CAS  PubMed  Google Scholar 

  • Ley, K., Hoffman, H. M., Kubes, P., Cassatella, M. A., Zychlinsky, A., Hedrick, C. C., et al. (2018). Neutrophils: new insights and open questions. Science Immunology, 3(30), eaat4579.

    PubMed  Google Scholar 

  • Listgarten, M. A. (1976). Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. Journal of Periodontology, 47(1), 1–18.

    CAS  PubMed  Google Scholar 

  • Listgarten, M. A., & Hellden, L. (1978). Relative distribution of bacteria at clinically healthy and periodontally diseased sites in humans. Journal of Clinical Periodontology, 5(2), 115–132.

    CAS  PubMed  Google Scholar 

  • Lominadze, G., Powell, D. W., Luerman, G. C., Link, A. J., Ward, R. A., & McLeish, K. R. (2005). Proteomic analysis of human neutrophil granules. Molecular & Cellular Proteomics, 4(10), 1503–1521.

    CAS  Google Scholar 

  • Maekawa, T., Krauss Jennifer, L., Abe, T., Jotwani, R., Triantafilou, M., Triantafilou, K., et al. (2014). Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host & Microbe, 15(6), 768–778.

    CAS  Google Scholar 

  • Marsh, P. D. (1994). Microbial ecology of dental plaque and its significance in health and disease. Advances in Dental Research, 8(2), 263–271.

    CAS  PubMed  Google Scholar 

  • Moffatt, C. E., Whitmore, S. E., Griffen, A. L., Leys, E. J., & Lamont, R. J. (2011). Filifactor alocis interactions with gingival epithelial cells. Molecular Oral Microbiology, 26(6), 365–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, E. C., & Frick, I. M. (2013). Gram-positive anaerobic cocci--commensals and opportunistic pathogens. FEMS Microbiology Reviews, 37(4), 520–553.

    CAS  PubMed  Google Scholar 

  • Nauseef, W. M. (2007). How human neutrophils kill and degrade microbes: An integrated view. Immunological Reviews, 219, 88–102.

    CAS  PubMed  Google Scholar 

  • Nauseef, W. M. (2014). Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochimica et Biophysica Acta, 1840(2), 757–767.

    CAS  PubMed  Google Scholar 

  • Nauseef, W. M., & Borregaard, N. (2014). Neutrophils at work. Nature Immunology, 15(7), 602–611.

    CAS  PubMed  Google Scholar 

  • Parker, H., Dragunow, M., Hampton, M. B., Kettle, A. J., & Winterbourn, C. C. (2012). Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology, 92(4), 841–849.

    CAS  PubMed  Google Scholar 

  • Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., et al. (2001). Bacterial diversity in human subgingival plaque. Journal of Bacteriology, 183(12), 3770–3783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paster, B. J., Olsen, I., Aas, J. A., & Dewhirst, F. E. (2006). The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 2000, 42, 80–87.

    PubMed  Google Scholar 

  • Pelletier, M., Maggi, L., Micheletti, A., Lazzeri, E., Tamassia, N., Costantini, C., et al. (2010). Evidence for a cross-talk between human neutrophils and Th17 cells. Blood, 115(2), 335–343.

    CAS  PubMed  Google Scholar 

  • Perez-Chaparro, P. J., Goncalves, C., Figueiredo, L. C., Faveri, M., Lobao, E., Tamashiro, N., et al. (2014). Newly identified pathogens associated with periodontitis: A systematic review. Journal of Dental Research, 93(9), 846–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pilsczek, F. H., Salina, D., Poon, K. K., Fahey, C., Yipp, B. G., Sibley, C. D., et al. (2010). A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. Journal of Immunology, 185(12), 7413–7425.

    CAS  Google Scholar 

  • Porschen, R. K., & Sonntag, S. (1974). Extracellular deoxyribonuclease production by anaerobic bacteria. Applied Microbiology, 27(6), 1031–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remijsen, Q., Kuijpers, T. W., Wirawan, E., Lippens, S., Vandenabeele, P., & Vanden Berghe, T. (2011). Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death and Differentiation, 18(4), 581–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rørvig, S., Østergaard, O., Heegaard, N. H. H., & Borregaard, N. (2013). Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: Correlation with transcriptome profiling of neutrophil precursors. Journal of Leukocyte Biology, 94(4), 711–721.

    PubMed  Google Scholar 

  • Rudek, W., & Haque, R. U. (1976). Extracellular enzymes of the genus Bacteroides. Journal of Clinical Microbiology, 4(5), 458–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder, M. I. (2010). Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontology 2000, 53(1), 124–137.

    PubMed  Google Scholar 

  • Scapini, P., & Cassatella, M. A. (2014). Social networking of human neutrophils within the immune system. Blood, 124(5), 710–719.

    CAS  PubMed  Google Scholar 

  • Schlafer, S., Riep, B., Griffen, A. L., Petrich, A., Hubner, J., Berning, M., et al. (2010). Filifactor alocis—involvement in periodontal biofilms. BMC Microbiology, 10, 66.

    PubMed  PubMed Central  Google Scholar 

  • Scott, D. A., & Krauss, J. (2012). Neutrophils in periodontal inflammation. Frontiers of Oral Biology, 15, 56–83.

    PubMed  Google Scholar 

  • Simon, D., Simon, H. U., & Yousefi, S. (2013). Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy, 68(4), 409–416.

    CAS  PubMed  Google Scholar 

  • Siqueira, J. F., Jr., & Rocas, I. N. (2003). Detection of Filifactor alocis in endodontic infections associated with different forms of periradicular diseases. Oral Microbiology and Immunology, 18(4), 263–265.

    CAS  PubMed  Google Scholar 

  • Siqueira, J. F., Jr., Rocas, I. N., Alves, F. R., & Silva, M. G. (2009). Bacteria in the apical root canal of teeth with primary apical periodontitis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 107(5), 721–726.

    PubMed  Google Scholar 

  • Sizova, M. V., Hohmann, T., Hazen, A., Paster, B. J., Halem, S. R., Murphy, C. M., et al. (2012). New approaches for isolation of previously uncultivated oral bacteria. Applied and Environmental Microbiology, 78(1), 194–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sizova, M. V., Chilaka, A., Earl, A. M., Doerfert, S. N., Muller, P. A., Torralba, M., et al. (2015). High-quality draft genome sequences of five anaerobic oral bacteria and description of Peptoanaerobacter stomatis gen. Nov., sp. nov., a new member of the family Peptostreptococcaceae. Standards in Genomic Sciences, 10, 37.

    PubMed  PubMed Central  Google Scholar 

  • Socransky, S. S., & Haffajee, A. D. (1994). Evidence of bacterial etiology: A historical perspective. Periodontology 2000, 5, 7–25.

    CAS  PubMed  Google Scholar 

  • Socransky, S. S., & Haffajee, A. D. (2005). Periodontal microbial ecology. Periodontology 2000, 38, 135–187.

    PubMed  Google Scholar 

  • Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent, R. L., Jr. (1998). Microbial complexes in subgingival plaque. Journal of Clinical Periodontology, 25(2), 134–144.

    CAS  PubMed  Google Scholar 

  • Solbiati, J., & Frias-Lopez, J. (2018). Metatranscriptome of the oral microbiome in health and disease. Journal of Dental Research, 97(5), 492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumby, P., Barbian, K. D., Gardner, D. J., Whitney, A. R., Welty, D. M., Long, R. D., et al. (2005). Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1679–1684.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamassia, N., Bianchetto-Aguilera, F., Arruda-Silva, F., Gardiman, E., Gasperini, S., Calzetti, F., et al. (2018). Cytokine production by human neutrophils: Revisiting the “dark side of the moon”. European Journal of Clinical Investigation, 48(S2), e12952.

    PubMed  Google Scholar 

  • Tecchio, C., & Cassatella, M. A. (2016). Neutrophil-derived chemokines on the road to immunity. Seminars in Immunology, 28(2), 119–128.

    CAS  PubMed  Google Scholar 

  • Tsai, C. Y., Wolff, L. F., Germaine, G., & Hodges, J. (2003). A rapid DNA probe test compared to culture methods for identification of subgingival plaque bacteria. Journal of Clinical Periodontology, 30(1), 57–62.

    CAS  PubMed  Google Scholar 

  • Uriarte, S. M., Powell, D. W., Luerman, G. C., Merchant, M. L., Cummins, T. D., Jog, N. R., et al. (2008). Comparison of proteins expressed on secretory vesicle membranes and plasma membranes of human neutrophils. Journal of Immunology, 180(8), 5575–5581.

    CAS  Google Scholar 

  • Uriarte, S. M., Edmisson, J. S., & Jimenez-Flores, E. (2016). Human neutrophils and oral microbiota: A constant tug-of-war between a harmonious and a discordant coexistence. Immunological Reviews, 273(1), 282–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vashishta, A., Jimenez Flores, E., Klaes, C. K., Tian, S., Miralda, I., Lamont, R. J., & Uriarte, S. M. (2019). Putative periodontal pathogens, Filifactor alocis and Peptoanaerobacter stomatis, induce differential cytokine and chemokine production by human neutrophils. Pathogens, 8(2), 59.

    PubMed Central  Google Scholar 

  • Vitkov, L., Klappacher, M., Hannig, M., & Krautgartner, W. D. (2009). Extracellular neutrophil traps in periodontitis. Journal of Periodontal Research, 44(5), 664–672.

    CAS  PubMed  Google Scholar 

  • Wang, Q., Wright, C. J., Dingming, H., Uriarte, S. M., & Lamont, R. J. (2013). Oral community interactions of Filifactor alocis in vitro. PLoS One, 8(10), e76271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Jotwani, R., Le, J., Krauss, J. L., Potempa, J., Coventry, S. C., et al. (2014). Filifactor alocis infection and inflammatory responses in the mouse subcutaneous chamber model. Infection and Immunity, 82(3), 1205–1212.

    PubMed  PubMed Central  Google Scholar 

  • White, P. C., Chicca, I. J., Cooper, P. R., Milward, M. R., & Chapple, I. L. (2016). Neutrophil extracellular traps in periodontitis: A web of intrigue. Journal of Dental Research, 95(1), 26–34.

    CAS  PubMed  Google Scholar 

  • Yipp, B. G., Petri, B., Salina, D., Jenne, C. N., Scott, B. N., Zbytnuik, L. D., et al. (2012). Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nature Medicine, 18(9), 1386–1393.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yost, S., Duran-Pinedo, A. E., Teles, R., Krishnan, K., & Frias-Lopez, J. (2015). Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Medicine, 7(1), 27.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Hou, B. X., Zhao, H. Y., & Sun, Z. (2012). Microbial diversity in failed endodontic root-filled teeth. Chinese Medical Journal, 125(6), 1163–1168.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia M. Uriarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Miralda, I., Vashishta, A., Uriarte, S.M. (2019). Neutrophil Interaction with Emerging Oral Pathogens: A Novel View of the Disease Paradigm. In: Belibasakis, G.N., Hajishengallis, G., Bostanci, N., Curtis, M.A. (eds) Oral Mucosal Immunity and Microbiome. Advances in Experimental Medicine and Biology, vol 1197. Springer, Cham. https://doi.org/10.1007/978-3-030-28524-1_12

Download citation

Publish with us

Policies and ethics