Advertisement

The Contribution of Information and Communication Technology to the Teaching of Proof

  • Maria Alessandra MariottiEmail author
Chapter
  • 107 Downloads
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 14)

Abstract

This chapter discusses the use of a Dynamic Geometry Environment for fostering students’ introduction to mathematical proof. Grounded in the theory of semiotic mediation, it explores, on the one hand, the link between computational tools and the personal meanings emerging from their use in classroom activities and, on the other hand, the mathematical notions that are the object of instruction. The discussion uses three interrelated perspectives—the epistemological, the cognitive, and the didactic—to elaborate on findings from a number of longstanding teaching experiments in secondary school classrooms. Some illustrative examples are presented, drawn from research studies carried out in previous years and still in progress.

Keywords

Conjecture Proof Conditionality Indirect proof Theory of semiotic mediation Semiotic potential Information and communication technology (ICT) Dynamic geometry environment (DGE) Geometric construction 

References

  1. Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? ZDM: Mathematics Education, 40(3), 401–412.CrossRefGoogle Scholar
  2. Arsac, G., & Mante, M. (1983). Des “problème ouverts” dans nos classes du premier cycle. Petit x, 2, 5–33.Google Scholar
  3. Arsac, G. (1992). Initiation au raisonnement au college. Presse Universitaire de Lyon.Google Scholar
  4. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72.CrossRefGoogle Scholar
  5. Arzarello, F. (2007). The proof in the 20th century: From Hilbert to automatic theorem proving. In P. Boero (Ed.), Theorems in school from history and epistemology to cognitive and educational issues (pp. 43–64). Rotterdam: Sense Publishers.Google Scholar
  6. Arzarello, F. Bartolini Bussi, M. G., Leung, A. Y. L., Mariotti, M. A., & Stevenson, I. (2012) Experimental approaches to mathematical thinking: Artefacts and proof. In G. Hanna, & M. De Villier, Proof and proving in mathematics education (pp. 1–10). Springer, New ICMI Study Series, Volume 15, 2012.Google Scholar
  7. Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.CrossRefGoogle Scholar
  8. Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2013). Reasoning by contradiction in dynamic geometry. PNA, 7(2), 63–73.Google Scholar
  9. Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2018). From pseudo-objects in dynamic explorations to proof by contradiction. Digital Experiences in Mathematics Education, 1–23.  https://doi.org/10.1007/s40751-018-0039-2.CrossRefGoogle Scholar
  10. Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: an essay on the case of proof. ZDM: The International Journal on Mathematics Education, 40, 501–512.CrossRefGoogle Scholar
  11. Bartolini Bussi, M.G. (1996). Mathematical discussion and perspective drawings in primary school. Education Studies in Mathematics 31, 11– 41.CrossRefGoogle Scholar
  12. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education, Second revised edition (pp. 746–805). Lawrence Erlbaum, Mahwah, NJ.Google Scholar
  13. Boero, P., Garuti, R., & Lemut, E. (1999). About the generation of conditionality of statements and its links with proving. Proceedings of the Conference of the International Group for, 2, 137–144.Google Scholar
  14. Boero, P., Garuti, R., & Lemut, E. (2007). Approaching theorems in grade VIII: Some mental processes underlying producing and proving conjectures, and conditions suitable to enhance them. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 247–262). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  15. de Villiers, M. (1998). An alternative approach to proof in dynamic geometry. In R. Lehrer, & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 369–394). Erlbaum, Mahwah.Google Scholar
  16. De Villiers, M. (2001). Papel e funcoes da demonstracao no trabalho com o Sketchpad. Educacao Matematica, 63, 31–36. (retrived online: https://mzone.mweb.co.za/residents/profmd/proofc.pdf).
  17. Dreyfus, T., & Hadas, N. (1996). Proof as answer to the question why. Zentralblatt fur Didaktik der Mathematik/International Reviews on Mathematical Education, 28(1), 1–5.Google Scholar
  18. Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 138–162). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  19. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139–162.CrossRefGoogle Scholar
  20. Hadas, N., Hershkowitz, R., & Schwarz, B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44(1–3), 127–150.CrossRefGoogle Scholar
  21. Hanna, G. (1989). More than formal proof. For the Learning of Mathematics, 9(1), 20–25.Google Scholar
  22. Hanna, G., & Jahnke, H. N. (2007). Proving and modelling. In W. Blum, P. L. Galbraith, H.W. Henn, & M. Niss (Eds.), Applications and modelling in mathematics education. The 14th ICMI study (pp. 145–152). Dordrecht: Springer.Google Scholar
  23. Hanna, G., Jahnke, H. N., & Pulte, H. (Eds.). (2009). Explanation and proof in mathematics: Philosophical and educational perspectives. Berlin: Springer.Google Scholar
  24. Hanna, G., & De Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th ICMI study (Vol. 15). Springer Science & Business Media.Google Scholar
  25. Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. Schonfeld, J. Kaput, & E. Dubinsky (Eds.) Research in collegiate mathematics education III. (Issues in Mathematics Education, Vol. 7, pp. 234–282). American Mathematical Society.Google Scholar
  26. Herbst, P. G. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49(3), 283–312.CrossRefGoogle Scholar
  27. Hölzl, R. (1996). How does “dragging” affect the learning of geometry. International Journal of Computer for Mathematical Learning, 1(2), 169–187.CrossRefGoogle Scholar
  28. Laborde, C. & Laborde, J. M. (1991). Problem solving in geometry: From microworlds to intelligent computer environments. In J. P. Ponte, J. F. Matos, & D. Fernandes (Eds.), Mathematical problem solving and new information technologies (pp. 177–192). NATO AS1 Series F, New York: Springer.Google Scholar
  29. Laborde, J. M., & Strässer, R. (1990). Cabri-géomètre: a microworld of geometry for guided discovery learning. Zentralblatt für Didaktik der Mathematik, 90(5), 171–177.Google Scholar
  30. Leron, U. (1985). A Direct approach to indirect proofs. Educational Studies in Mathematics, 16(3), 321–325.CrossRefGoogle Scholar
  31. Leung, A., & Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: A case of proof by contradiction. International Journal of Computers for Mathematical Learning, 7, 145–165.CrossRefGoogle Scholar
  32. Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in dynamic geometry. International Journal of Mathematical Education in Science and Technology, 37(6), 665–679.CrossRefGoogle Scholar
  33. Mariotti, M. A. (2001). Justifying and proving in the Cabri environment. International Journal of Computer for Mathematical Learning, 6(3), 257–281.CrossRefGoogle Scholar
  34. Mariotti, M.A. (2006). Proof and proving in mathematics education. In A. Gutiérrez & P. Boero (Eds.) Handbook of research on the psychology of mathematics education (pp. 173–204). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  35. Mariotti, M. A. (2007). Geometrical proof: The mediation of a microworld. In P. Boero (Ed.), Theorems in school: From history epistemology and cognition to classroom practice (pp. 285–304). Rotterdam, The Netherlands: Sense Publishers.CrossRefGoogle Scholar
  36. Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: The role of the teacher. ZDM: The International Journal on Mathematics Education, 41, 427–440.CrossRefGoogle Scholar
  37. Mariotti, M. A. (2010). Proofs, semiotics and artefacts of information technologies. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 169–190). Springer.Google Scholar
  38. Mariotti, M. A. (2012). Proof and proving in the classroom: Dynamic geometry systems as tools of semiotic mediation. Research in Mathematics Education 14(2), 163–185 (2012).CrossRefGoogle Scholar
  39. Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In S. Rezat, M. Hattermann, & A. Peter-Koop (Eds.), Transformation. A fundamental idea of mathematics education. Springer New York.Google Scholar
  40. Mariotti, M. A. & Antonini, S. (2009). Breakdown and reconstruction of figural concepts in proofs by contradiction in geometry. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villers (Eds.), Proof and proving in mathematics education, ICMI study 19 conference proceedings (Vol. 2, pp. 82–87).Google Scholar
  41. Mariotti, M.A., Bartolini Bussi, M., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: from history and epistemology to cognition. In E. Pehkonen (Ed.), Proceedings of PME-XXI, (Vol. 1, pp. 180–195). Lathi, Finland.Google Scholar
  42. Miyazaki, M., Fujita, T., & Jones, K. (2015). Flow-chart proofs with open problems as scaffolds for learning about geometrical proofs. ZDM: International Journal on Mathematics Education, 47(7), 1–14.Google Scholar
  43. Olivero, F. (2003). Proving within dynamic geometry environments, Doctoral Dissertation, Graduate School of Education, Bristol. https://telearn.archives-ouvertes.fr/file/index/docid/190412/filename/Olivero-f-2002.pdf.
  44. Pedemonte, B. (2002) Etude didactique et cognitive des rapports de l’argumentationet de la demonstration en mathématiques, (Unpublished) Thèse de Doctorat, Université Joseph Fourier, Grenoble. http://tel.archives-ouvertes.fr/tel-00004579/.
  45. Reid, D. A., & Knipping, C. (2010). Proof in mathematics education: Research, learning and teaching. Rotterdam, The Netherlands: Sense Publisher.CrossRefGoogle Scholar
  46. Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic press.Google Scholar
  47. Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29(2), 123–151.CrossRefGoogle Scholar
  48. Sierpinska, A. (2005). On practical and theoretical thinking. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign—Grounding mathematics education. Festschrift for Michael Otte (pp. 117–135) New York: Springer.Google Scholar
  49. Simon, M. A. (1996). Beyond inductive and deductive reasoning: The search for a sense of knowing. Educational Studies in Mathematics, 30(2), 197–209.CrossRefGoogle Scholar
  50. Sinclair, N., & Robutti, O. (2012). Technology and the role of proof: The case of dynamic geometry. In Third international handbook of mathematics education (pp. 571–596). New York, NY: Springer.Google Scholar
  51. Sinclair, N., Bussi, M. G. B., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2017). Geometry education, including the use of new technologies: A survey of recent research. In Proceedings of the 13th international congress on mathematical education (pp. 277–287). Cham: Springer.Google Scholar
  52. Stylianides, G. J., & Stylianides, A. J. (2005). Validation of solutions of construction problems in dynamic geometry environments. International Journal of Computers for Mathematical Learning, 10(1), 31–47.CrossRefGoogle Scholar
  53. Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in mathematics education research. In The second handbook of research on the psychology of mathematics education (pp. 315–351). Rotterdam: Sense Publishers.Google Scholar
  54. Thompson, D. R. (1996). Learning and teaching indirect proof. The Mathematics Teacher, 89(6), 474–482.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of SienaSienaItaly

Personalised recommendations