Advertisement

Using 3D Geometry Systems to Find Theorems of Billiard Trajectories in Polyhedra

  • Heinz SchumannEmail author
Chapter
  • 99 Downloads
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 14)

Abstract

The use of 3D dynamic geometry systems (D3DGS) opens new topics in spatial geometry. These systems provide opportunities for discovery learning (enrichment) and support the application of heuristic methods for theorem finding (reinforcement). One of these topics is billiards in convex polyhedra. Discovering distinctive billiards trajectories in a cube and its generalizations is suitable for spatial geometry activities beyond regular classroom lessons. It is equivalent to the discovery of inscribed polygons with minimal perimeter. The findings reveal that spatial polygons may be similarly used to mark special convex polyhedra.

References

  1. Bainville, E., & Laborde, J.-M. (2004–2015) Cabri 3D 2.1. Grenoble: Cabrilog (www.cabri.com).
  2. Berger, M. (2010). Geometry revealed. A Jacob’s ladder to modern higher geometry (p. 728). Heidelberg: Springer.Google Scholar
  3. Borwein, J. (2012). Exploratory experimentation: digitally-assisted discovery and proof. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education. New ICMI Study Series 15 (pp. 69–95). Springer.  https://doi.org/10.1007/978-94-007-2129-6_4.Google Scholar
  4. De Villiers, M. (1990). The role and function of proof. Pythagoras, 24, 17–24.Google Scholar
  5. De Villiers, M. (2010). Experimentation and proof in mathematics. In G. Hanna, H. Jahnke & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 205–221). Springer.  https://doi.org/10.1007/978-1-4419-0576-5_14.Google Scholar
  6. Efremovitch, V. A., & Il’jashenko, J. S. (1962). Regular Polygons in En (Russian). Bulletin Moscow University, Series I 17, No. 5, pp. 18–23.Google Scholar
  7. Galperin, G. A., & Semliakov, A. N. (1990). Mathematical billiards (Russian). Moskau: Nauka.Google Scholar
  8. Gardner, M. (1971). Martin Gardener’s sixth book of mathematical games from scientific American (pp. 29–38). San Francisco: W. H. Freeman.Google Scholar
  9. Gutierrez, A., Pegg, J., & Lawrie, C. (2004). Characterization of students’ reasoning and proof abilities in 3-dimensional geometry. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 511–518).Google Scholar
  10. Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44, 5–23.CrossRefGoogle Scholar
  11. Harel, G. (2013). Intellectual need. In K. Leatham (Ed.), Vital directions for mathematics education research (pp. 119–151). New York (NY): Springer.CrossRefGoogle Scholar
  12. Hudelson, M. (not specifiable). Periodic omnihedral billiards in regular polyhedra and polytopes.Google Scholar
  13. Schumann, H. (2007). Schulgeometrie im virtuellen Handlungsraum (School geometry in the virtual action space). Hildesheim: Verlag Franzbecker.Google Scholar
  14. Schumann, H. (2017). Das räumliche Viereck – eine Einführung (The spatial quadrangle—An introduction). MNU Journal 6(70), 382–389.Google Scholar
  15. Tabachnikov, S. (2013). Geometrie und Billard (Geometry and Billiards). Berlin, Heidelberg: Springer.Google Scholar
  16. Winter, H. (1989). Entdeckendes Lernen im Mathematikunterricht (Dicovery learning in the teaching of mathematics). Braunschweig: Verlag Vieweg.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Education WeingartenWeingartenGermany

Personalised recommendations