Skip to main content

Computer-Generated Geometry Proofs in a Learning Context

  • Chapter
  • First Online:
Proof Technology in Mathematics Research and Teaching

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 14))

Abstract

Given its formal, logical, and spatial properties, geometry is well suited to teaching environments that include dynamic geometry systems (DGSs) , geometry automated theorem provers (GATPs), and repositories of geometric problems. These tools enable students to explore existing knowledge in addition to creating new constructions and testing new conjectures. In this chapter, we trace the evolution of current automatic proving technologies, how these technologies are beginning to be used by geometry practitioners in general to validate geometric conjectures and generate proofs with natural language and visual rendering, and foresee their evolution and applicability in an educational setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cinderella.de.

  2. 2.

    http://poincare.matf.bg.ac.rs/~janicic/gclc/.

  3. 3.

    https://www.geogebra.org/.

  4. 4.

    http://www.cs.wichita.edu/~ye/.

  5. 5.

    http://argo.matf.bg.ac.rs/?content=downloads.

  6. 6.

    The Pythagoras difference is a generalisation of the Pythagorean equality regarding the three sides of a right triangle, to an expression applicable to any triangle (for a triangle ABC with the right angle at B, it holds that \(\mathcal {P}_{ABC}=0\)).

  7. 7.

    Haralambous, Yannis and Quaresma, Pedro, Geometric Statements as Controlled Hybrid Language Sentences, an Example in preparation.

  8. 8.

    http://hilbert.mat.uc.pt/WebGeometryLab.

  9. 9.

    https://github.com/ivan-z-petrovic/open-geo-prover.

References

  • Abánades, M., Botana, F., Kovács, Z., Recio, T., & Sólyom-Gecse, C. (2016). Towards the automatic discovery of theorems in GeoGebra. In G. M. Greuel, T. Koch, P. Paule, & A. Sommese (Eds.), Mathematical Software—ICMS 2016 (pp. 37–42). Cham: Springer International Publishing.

    Google Scholar 

  • Baeta, N., & Quaresma, P. (2013). The full angle method on the OpenGeoProver. In C. Lange, D. Aspinall, J. Carette, J. Davenport, A. Kohlhase, M. Kohlhase, P. Libbrecht, P. Quaresma, F. Rabe, P. Sojka, I. Whiteside, & W. Windsteiger (Eds.), MathUI, OpenMath, PLMMS and ThEdu Workshops and Work in Progress at the Conference on Intelligent Computer Mathematics, no. 1010 in CEUR Workshop Proceedings. Aachen. http://ceur-ws.org/Vol-1010/paper-08.pdf.

  • Bezem, M., & Coquand, T. (2005). Automating coherent logic. In G. Sutcliffe & A. Voronkov (Eds.), Logic for programming, artificial intelligence, and reasoning. Lecture Notes in Computer Science (Vol. 3835, pp. 246–260). Berlin/Heidelberg: Springer. https://doi.org/10.1007/11591191_18.

    Chapter  Google Scholar 

  • Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., et al. (2015). Automated theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55(1), 39–59. https://doi.org/10.1007/s10817-015-9326-4.

    Article  Google Scholar 

  • Chou, S. (1985). Proving and discovering geometry theorems using Wu’s method. Ph.D. thesis, The University of Texas, Austin.

    Google Scholar 

  • Chou, S. C., & Gao, X. S. (2001). Automated reasoning in geometry. In J. A. Robinson & A. Voronkov (Eds.), Handbook of automated reasoning (pp. 707–749). Elsevier Science Publishers B.V.

    Google Scholar 

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1994). Machine proofs in geometry. World Scientific.

    Google Scholar 

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996a). Automated generation of readable proofs with geometric invariants, I. Multiple and shortest proof generation. Journal of Automated Reasoning, 17(13), 325–347. https://doi.org/10.1007/BF00283133.

    Article  Google Scholar 

  • Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996b). Automated generation of readable proofs with geometric invariants, II. Theorem proving with full-angles. Journal of Automated Reasoning, 17(13), 349–370. https://doi.org/10.1007/BF00283134.

    Article  Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1–2), 5–23. https://doi.org/10.1023/A:1012737223465.

    Article  Google Scholar 

  • Hanna, G., & Sidoli, N. (2007). Visualisation and proof: A brief survey of philosophical perspectives. ZDM, 39(1–2), 73–78. https://doi.org/10.1007/s11858-006-0005-0.

    Article  Google Scholar 

  • Hohenwarter, M. (2002). Geogebra—A software system for dynamic geometry and algebra in the plane. Master’s thesis, University of Salzburg, Austria.

    Google Scholar 

  • Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Springer. https://eprints.soton.ac.uk/41227/.

  • Janičić, P. (2006). GCLC—A tool for constructive Euclidean geometry and more than that. In A. Iglesias & N. Takayama (Eds.) Mathematical Software—ICMS 2006. Lecture Notes in Computer Science (Vol. 4151, pp. 58–73). Springer. https://doi.org/10.1007/11832225_6.

    Google Scholar 

  • Janičić, P., Narboux, J., & Quaresma, P. (2012). The area method: A recapitulation. Journal of Automated Reasoning, 48(4), 489–532. https://doi.org/10.1007/s10817-010-9209-7.

    Article  Google Scholar 

  • Janičić, P., & Quaresma, P. (2006). System description: GCLCprover + GeoThms. In U. Furbach, N. Shankar (Eds.), Automated reasoning. Lecture Notes in Computer Science (Vol. 4130, pp. 145–150). Springer. https://doi.org/10.1007/11814771_13.

    Chapter  Google Scholar 

  • Janičić, P., & Quaresma, P. (2007). Automatic verification of regular constructions in dynamic geometry systems. In F. Botana & T. Recio (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 4869, pp. 39–51). Springer. https://doi.org/10.1007/978-3-540-77356-6_3.

  • Jiang, J., & Zhang, J. (2012). A review and prospect of readable machine proofs for geometry theorems. Journal of Systems Science and Complexity, 25(4), 802–820. https://doi.org/10.1007/s11424-012-2048-3.

    Article  Google Scholar 

  • Kapur, D. (1986). Using Gröbner bases to reason about geometry problems. Journal of Symbolic Computation, 2(4), 399–408. https://doi.org/10.1016/S0747-7171(86)80007-4.

    Article  Google Scholar 

  • Kovács, Z. (2015). Computer based conjectures and proofs in teaching Euclidean geometry. Ph.D. thesis, Universität Linz. urn:nbn:at:at-ubl:1-5034.

    Google Scholar 

  • Kovács, Z. (2015). The relation tool in GeoGebra (Vol. 5, pp. 53–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-21362-0_4.

    Chapter  Google Scholar 

  • Li, H. (2000). Clifford algebra approaches to mechanical geometry theorem proving. In X. S. Gao & D. Wang (Eds.), Mathematics mechanization and applications (pp. 205–299). San Diego, CA: Academic Press.

    Google Scholar 

  • Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (Eds.). (2009a). Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education (Vol. 1). The Department of Mathematics: National Taiwan Normal University.

    Google Scholar 

  • Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (Eds.). (2009b). Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education (Vol. 2). The Department of Mathematics: National Taiwan Normal University.

    Google Scholar 

  • Nelsen, R. B. (1993). Proofs without words: Exercises in visual thinking (Vol. 1). MAA.

    Google Scholar 

  • Paneque, J., Cobo, P., Fortuny, J.,& Richard, P. R. (2016). Argumentative effects of a geometric construction tutorial system in solving problems of proof. In: Proceedings of the 4th International Workshop on Theorem Proving Components for Educational Software, July 15, 2015, Washington, D.C., USA. CISUC Technical Reports (Vol. 2016-001, pp. 13–35). CISUC.

    Google Scholar 

  • Quaresma, P. (2017). Towards an intelligent and dynamic geometry book. Mathematics in Computer Science, 11(3), 427–437. https://doi.org/10.1007/s11786-017-0302-8.

    Article  Google Scholar 

  • Quaresma, P., & Janičić, P. (2006). Integrating dynamic geometry software, deduction systems, and theorem repositories. In J. M. Borwein & W. M. Farmer (Eds.), Mathematical knowledge management. Lecture Notes in Computer Science (Vol. 4108, pp. 280–294). Berlin: Springer. https://doi.org/10.1007/11812289_22.

    Google Scholar 

  • Quaresma, P., & Janičić, P. (2009). The area method, rigorous proofs of lemmas in Hilbert’s style axiom system. Tech. Rep. 2009/006, Centre for Informatics and Systems of the University of Coimbra.

    Google Scholar 

  • Quaresma, P., Janičić, P., Tomašević, J., Vujošević-Janičić, M., & Tošić, D. (2008). Communicating mathematics in the digital era. In XML-bases format for descriptions of geometric constructions and proofs (pp. 183–197). Wellesley, MA: A. K. Peters, Ltd.

    Google Scholar 

  • Quaresma, P., & Santos, V. (2016). Visual geometry proofs in a learning context. In W. Neuper & P. Quaresma (Eds.), Proceedings of ThEdu’15, CISUC Technical Reports (Vol. 2016001, pp. 1–6). CISUC. https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR2016-01.pdf.

  • Quaresma, P., Santos, V., & Bouallegue, S. (2013). The Web Geometry Laboratory project. In J. Carette, D. Aspinall, C. Lange, P. Sojka & W. Windsteiger (Eds.), CICM 2013. Lecture Notes in Computer Science (Vol. 7961, pp. 364–368). Springer. https://doi.org/10.1007/978-3-642-39320-4_30.

    Google Scholar 

  • Quaresma, P., Santos, V., & Marić, M. (2018). WGL, a web laboratory for geometry. Education and Information Technologies, 23(1), 237–252. https://doi.org/10.1007/s10639-017-9597-y.

    Article  Google Scholar 

  • Recio, T., & Vélez, M. P. (2012). An introduction to automated discovery in geometry through symbolic computation (pp. 257–271). Vienna: Springer. https://doi.org/10.1007/978-3-7091-0794-2_12.

    Google Scholar 

  • Richard, P. R., Oller Marcén, A. M., & Meavilla Seguí, V. (2016). The concept of proof in the light of mathematical work. ZDM, 48(6), 843–859. https://doi.org/10.1007/s11858-016-0805-9.

    Article  Google Scholar 

  • Richter-Gebert, J., & Kortenkamp, U. (1999). The interactive geometry software Cinderella. Springer.

    Google Scholar 

  • Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Computers & Education, 51(1), 297–317.

    Article  Google Scholar 

  • Santos, V., & Quaresma, P. (2012). Integrating DGSs and GATPs in an adaptative and collaborative blended-learning Web-environment. In First Workshop on CTP Components for Educational Software (THedu’11), EPTCS (Vol. 79, pp. 111–123). https://doi.org/10.4204/EPTCS.79.7.

    Article  Google Scholar 

  • Santos, V., & Quaresma, P. (2013). Collaborative aspects of the WGL project. Electronic Journal of Mathematics & Technology, 7(6). Mathematics and Technology, LLC.

    Google Scholar 

  • Santos, V., Quaresma, P., Marić, M., & Campos, H. (2018). Web geometry laboratory: Case studies in Portugal and Serbia. Interactive Learning Environments, 26(1), 3–21. https://doi.org/10.1080/10494820.2016.1258715.

    Article  Google Scholar 

  • Stojanović, S., Narboux, J., Bezem, M., & Janičić, P. (2014). A vernacular for coherent logic. In S. M. Watt, J. Davenport, A. Sexton, P. Sojka, & J. Urban (Eds.), Intelligent computer mathematics. Lecture Notes in Computer Science (Vol. 8543, pp. 388–403). Springer International Publishing. https://doi.org/10.1007/978-3-319-08434-3_28.

    Google Scholar 

  • Stojanović, S., Pavlović, V., & Janičić, P. (2011). A coherent logic based geometry theorem prover capable of producing formal and readable proofs. In P. Schreck, J. Narboux, & J. Richter-Gebert (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6877, pp. 201–220). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-25070-5_12.

    Chapter  Google Scholar 

  • de Villiers, M. (2006). Some pitfalls of dynamic geometry software. Learning and Teaching Mathematics, 2006(4), 46–52.

    Google Scholar 

  • Wang, D. (1995). Reasoning about geometric problems using an elimination method. In J. Pfalzgraf & D. Wang (Eds.), Automated practical reasoning (pp. 147–185). New York: Springer.

    Google Scholar 

  • Wang, K., & Su, Z. (2015). Automated geometry theorem proving for human-readable proofs. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15 (pp. 1193–1199). AAAI Press. http://dl.acm.org/citation.cfm?id=2832249.2832414.

  • Wu, W. (1984). On the decision problem and the mechanization of theorem proving in elementary geometry. In Automated theorem proving: After 25 years (Vol. 29, pp. 213–234). American Mathematical Society.

    Google Scholar 

  • Ye, Z., Chou, S. C., & Gao, X. S. (2010a). Visually dynamic presentation of proofs in plane geometry, Part 1. Journal of Automated Reasoning, 45, 213–241. https://doi.org/10.1007/s10817-009-9162-5.

    Article  Google Scholar 

  • Ye, Z., Chou, S. C., & Gao, X. S. (2010b). Visually dynamic presentation of proofs in plane geometry, Part 2. Journal of Automated Reasoning, 45, 243–266. https://doi.org/10.1007/s10817-009-9163-4.

    Article  Google Scholar 

  • Ye, Z., Chou, S. C., & Gao, X. S. (2011). An introduction to java geometry expert. In T. Sturm & C. Zengler (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6301, pp. 189–195). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-21046-4_10.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Quaresma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quaresma, P., Santos, V. (2019). Computer-Generated Geometry Proofs in a Learning Context. In: Hanna, G., Reid, D., de Villiers, M. (eds) Proof Technology in Mathematics Research and Teaching . Mathematics Education in the Digital Era, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-28483-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28483-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28482-4

  • Online ISBN: 978-3-030-28483-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics