Advertisement

Computer-Generated Geometry Proofs in a Learning Context

  • Pedro QuaresmaEmail author
  • Vanda Santos
Chapter
  • 101 Downloads
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 14)

Abstract

Given its formal, logical, and spatial properties, geometry is well suited to teaching environments that include dynamic geometry systems (DGSs) , geometry automated theorem provers (GATPs), and repositories of geometric problems. These tools enable students to explore existing knowledge in addition to creating new constructions and testing new conjectures. In this chapter, we trace the evolution of current automatic proving technologies, how these technologies are beginning to be used by geometry practitioners in general to validate geometric conjectures and generate proofs with natural language and visual rendering, and foresee their evolution and applicability in an educational setting.

References

  1. Abánades, M., Botana, F., Kovács, Z., Recio, T., & Sólyom-Gecse, C. (2016). Towards the automatic discovery of theorems in GeoGebra. In G. M. Greuel, T. Koch, P. Paule, & A. Sommese (Eds.), Mathematical Software—ICMS 2016 (pp. 37–42). Cham: Springer International Publishing.Google Scholar
  2. Baeta, N., & Quaresma, P. (2013). The full angle method on the OpenGeoProver. In C. Lange, D. Aspinall, J. Carette, J. Davenport, A. Kohlhase, M. Kohlhase, P. Libbrecht, P. Quaresma, F. Rabe, P. Sojka, I. Whiteside, & W. Windsteiger (Eds.), MathUI, OpenMath, PLMMS and ThEdu Workshops and Work in Progress at the Conference on Intelligent Computer Mathematics, no. 1010 in CEUR Workshop Proceedings. Aachen. http://ceur-ws.org/Vol-1010/paper-08.pdf.
  3. Bezem, M., & Coquand, T. (2005). Automating coherent logic. In G. Sutcliffe & A. Voronkov (Eds.), Logic for programming, artificial intelligence, and reasoning. Lecture Notes in Computer Science (Vol. 3835, pp. 246–260). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/11591191_18.CrossRefGoogle Scholar
  4. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., et al. (2015). Automated theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55(1), 39–59.  https://doi.org/10.1007/s10817-015-9326-4.CrossRefGoogle Scholar
  5. Chou, S. (1985). Proving and discovering geometry theorems using Wu’s method. Ph.D. thesis, The University of Texas, Austin.Google Scholar
  6. Chou, S. C., & Gao, X. S. (2001). Automated reasoning in geometry. In J. A. Robinson & A. Voronkov (Eds.), Handbook of automated reasoning (pp. 707–749). Elsevier Science Publishers B.V.Google Scholar
  7. Chou, S. C., Gao, X. S., & Zhang, J. Z. (1994). Machine proofs in geometry. World Scientific.Google Scholar
  8. Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996a). Automated generation of readable proofs with geometric invariants, I. Multiple and shortest proof generation. Journal of Automated Reasoning, 17(13), 325–347.  https://doi.org/10.1007/BF00283133.CrossRefGoogle Scholar
  9. Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996b). Automated generation of readable proofs with geometric invariants, II. Theorem proving with full-angles. Journal of Automated Reasoning, 17(13), 349–370.  https://doi.org/10.1007/BF00283134.CrossRefGoogle Scholar
  10. Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1–2), 5–23.  https://doi.org/10.1023/A:1012737223465.CrossRefGoogle Scholar
  11. Hanna, G., & Sidoli, N. (2007). Visualisation and proof: A brief survey of philosophical perspectives. ZDM, 39(1–2), 73–78.  https://doi.org/10.1007/s11858-006-0005-0.CrossRefGoogle Scholar
  12. Hohenwarter, M. (2002). Geogebra—A software system for dynamic geometry and algebra in the plane. Master’s thesis, University of Salzburg, Austria.Google Scholar
  13. Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Springer. https://eprints.soton.ac.uk/41227/.
  14. Janičić, P. (2006). GCLC—A tool for constructive Euclidean geometry and more than that. In A. Iglesias & N. Takayama (Eds.) Mathematical Software—ICMS 2006. Lecture Notes in Computer Science (Vol. 4151, pp. 58–73). Springer.  https://doi.org/10.1007/11832225_6.Google Scholar
  15. Janičić, P., Narboux, J., & Quaresma, P. (2012). The area method: A recapitulation. Journal of Automated Reasoning, 48(4), 489–532.  https://doi.org/10.1007/s10817-010-9209-7.CrossRefGoogle Scholar
  16. Janičić, P., & Quaresma, P. (2006). System description: GCLCprover + GeoThms. In U. Furbach, N. Shankar (Eds.), Automated reasoning. Lecture Notes in Computer Science (Vol. 4130, pp. 145–150). Springer.  https://doi.org/10.1007/11814771_13.CrossRefGoogle Scholar
  17. Janičić, P., & Quaresma, P. (2007). Automatic verification of regular constructions in dynamic geometry systems. In F. Botana & T. Recio (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 4869, pp. 39–51). Springer.  https://doi.org/10.1007/978-3-540-77356-6_3.
  18. Jiang, J., & Zhang, J. (2012). A review and prospect of readable machine proofs for geometry theorems. Journal of Systems Science and Complexity, 25(4), 802–820.  https://doi.org/10.1007/s11424-012-2048-3.CrossRefGoogle Scholar
  19. Kapur, D. (1986). Using Gröbner bases to reason about geometry problems. Journal of Symbolic Computation, 2(4), 399–408.  https://doi.org/10.1016/S0747-7171(86)80007-4.CrossRefGoogle Scholar
  20. Kovács, Z. (2015). Computer based conjectures and proofs in teaching Euclidean geometry. Ph.D. thesis, Universität Linz. urn:nbn:at:at-ubl:1-5034.Google Scholar
  21. Kovács, Z. (2015). The relation tool in GeoGebra (Vol. 5, pp. 53–71). Springer International Publishing.  https://doi.org/10.1007/978-3-319-21362-0_4.CrossRefGoogle Scholar
  22. Li, H. (2000). Clifford algebra approaches to mechanical geometry theorem proving. In X. S. Gao & D. Wang (Eds.), Mathematics mechanization and applications (pp. 205–299). San Diego, CA: Academic Press.Google Scholar
  23. Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (Eds.). (2009a). Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education (Vol. 1). The Department of Mathematics: National Taiwan Normal University.Google Scholar
  24. Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (Eds.). (2009b). Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education (Vol. 2). The Department of Mathematics: National Taiwan Normal University.Google Scholar
  25. Nelsen, R. B. (1993). Proofs without words: Exercises in visual thinking (Vol. 1). MAA.Google Scholar
  26. Paneque, J., Cobo, P., Fortuny, J.,& Richard, P. R. (2016). Argumentative effects of a geometric construction tutorial system in solving problems of proof. In: Proceedings of the 4th International Workshop on Theorem Proving Components for Educational Software, July 15, 2015, Washington, D.C., USA. CISUC Technical Reports (Vol. 2016-001, pp. 13–35). CISUC.Google Scholar
  27. Quaresma, P. (2017). Towards an intelligent and dynamic geometry book. Mathematics in Computer Science, 11(3), 427–437.  https://doi.org/10.1007/s11786-017-0302-8.CrossRefGoogle Scholar
  28. Quaresma, P., & Janičić, P. (2006). Integrating dynamic geometry software, deduction systems, and theorem repositories. In J. M. Borwein & W. M. Farmer (Eds.), Mathematical knowledge management. Lecture Notes in Computer Science (Vol. 4108, pp. 280–294). Berlin: Springer.  https://doi.org/10.1007/11812289_22.Google Scholar
  29. Quaresma, P., & Janičić, P. (2009). The area method, rigorous proofs of lemmas in Hilbert’s style axiom system. Tech. Rep. 2009/006, Centre for Informatics and Systems of the University of Coimbra.Google Scholar
  30. Quaresma, P., Janičić, P., Tomašević, J., Vujošević-Janičić, M., & Tošić, D. (2008). Communicating mathematics in the digital era. In XML-bases format for descriptions of geometric constructions and proofs (pp. 183–197). Wellesley, MA: A. K. Peters, Ltd.Google Scholar
  31. Quaresma, P., & Santos, V. (2016). Visual geometry proofs in a learning context. In W. Neuper & P. Quaresma (Eds.), Proceedings of ThEdu’15, CISUC Technical Reports (Vol. 2016001, pp. 1–6). CISUC. https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR2016-01.pdf.
  32. Quaresma, P., Santos, V., & Bouallegue, S. (2013). The Web Geometry Laboratory project. In J. Carette, D. Aspinall, C. Lange, P. Sojka & W. Windsteiger (Eds.), CICM 2013. Lecture Notes in Computer Science (Vol. 7961, pp. 364–368). Springer.  https://doi.org/10.1007/978-3-642-39320-4_30.Google Scholar
  33. Quaresma, P., Santos, V., & Marić, M. (2018). WGL, a web laboratory for geometry. Education and Information Technologies, 23(1), 237–252.  https://doi.org/10.1007/s10639-017-9597-y.CrossRefGoogle Scholar
  34. Recio, T., & Vélez, M. P. (2012). An introduction to automated discovery in geometry through symbolic computation (pp. 257–271). Vienna: Springer.  https://doi.org/10.1007/978-3-7091-0794-2_12.Google Scholar
  35. Richard, P. R., Oller Marcén, A. M., & Meavilla Seguí, V. (2016). The concept of proof in the light of mathematical work. ZDM, 48(6), 843–859.  https://doi.org/10.1007/s11858-016-0805-9.CrossRefGoogle Scholar
  36. Richter-Gebert, J., & Kortenkamp, U. (1999). The interactive geometry software Cinderella. Springer.Google Scholar
  37. Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Computers & Education, 51(1), 297–317.CrossRefGoogle Scholar
  38. Santos, V., & Quaresma, P. (2012). Integrating DGSs and GATPs in an adaptative and collaborative blended-learning Web-environment. In First Workshop on CTP Components for Educational Software (THedu’11), EPTCS (Vol. 79, pp. 111–123).  https://doi.org/10.4204/EPTCS.79.7.CrossRefGoogle Scholar
  39. Santos, V., & Quaresma, P. (2013). Collaborative aspects of the WGL project. Electronic Journal of Mathematics & Technology, 7(6). Mathematics and Technology, LLC.Google Scholar
  40. Santos, V., Quaresma, P., Marić, M., & Campos, H. (2018). Web geometry laboratory: Case studies in Portugal and Serbia. Interactive Learning Environments, 26(1), 3–21.  https://doi.org/10.1080/10494820.2016.1258715.CrossRefGoogle Scholar
  41. Stojanović, S., Narboux, J., Bezem, M., & Janičić, P. (2014). A vernacular for coherent logic. In S. M. Watt, J. Davenport, A. Sexton, P. Sojka, & J. Urban (Eds.), Intelligent computer mathematics. Lecture Notes in Computer Science (Vol. 8543, pp. 388–403). Springer International Publishing.  https://doi.org/10.1007/978-3-319-08434-3_28.Google Scholar
  42. Stojanović, S., Pavlović, V., & Janičić, P. (2011). A coherent logic based geometry theorem prover capable of producing formal and readable proofs. In P. Schreck, J. Narboux, & J. Richter-Gebert (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6877, pp. 201–220). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-25070-5_12.CrossRefGoogle Scholar
  43. de Villiers, M. (2006). Some pitfalls of dynamic geometry software. Learning and Teaching Mathematics, 2006(4), 46–52.Google Scholar
  44. Wang, D. (1995). Reasoning about geometric problems using an elimination method. In J. Pfalzgraf & D. Wang (Eds.), Automated practical reasoning (pp. 147–185). New York: Springer.Google Scholar
  45. Wang, K., & Su, Z. (2015). Automated geometry theorem proving for human-readable proofs. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15 (pp. 1193–1199). AAAI Press. http://dl.acm.org/citation.cfm?id=2832249.2832414.
  46. Wu, W. (1984). On the decision problem and the mechanization of theorem proving in elementary geometry. In Automated theorem proving: After 25 years (Vol. 29, pp. 213–234). American Mathematical Society.Google Scholar
  47. Ye, Z., Chou, S. C., & Gao, X. S. (2010a). Visually dynamic presentation of proofs in plane geometry, Part 1. Journal of Automated Reasoning, 45, 213–241.  https://doi.org/10.1007/s10817-009-9162-5.CrossRefGoogle Scholar
  48. Ye, Z., Chou, S. C., & Gao, X. S. (2010b). Visually dynamic presentation of proofs in plane geometry, Part 2. Journal of Automated Reasoning, 45, 243–266.  https://doi.org/10.1007/s10817-009-9163-4.CrossRefGoogle Scholar
  49. Ye, Z., Chou, S. C., & Gao, X. S. (2011). An introduction to java geometry expert. In T. Sturm & C. Zengler (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6301, pp. 189–195). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-21046-4_10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CoimbraCoimbraPortugal

Personalised recommendations