Skip to main content

Simplifying the Complexity of Social-ecological Systems with Conceptual Models

  • Chapter
  • First Online:
Social-ecological Systems of Latin America: Complexities and Challenges

Abstract

If you need to understand a social-ecological problem and an expert tells you “it is too complex,” please go with someone who knows how to generate conceptual models. Conceptual models serve to simplify a problem, to help in research activities, and to develop management strategies. Furthermore, they are transdisciplinary tools that help to communicate different social actors and experts from different disciplines. The main objective of this chapter is to discuss conceptual modeling from a social-ecological perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Altieri MA, Rojas A (1999) Ecological impacts of Chile’s neoliberal policies, with special emphasis on agroecosystems. Environ Dev Sustain 1:55–72

    Google Scholar 

  • Andrade RB (2017) El contexto cultural de la papa en Chiloé. Colecciones Digitales, Subdirección de Investigación. Dirección de bibliotecas, archivos y museos (Dibam), 23 pp

    Google Scholar 

  • Cárdenas R, Villagrán C (2005) Chiloé: Botánica de la cotidianidad. Consejo Nacional del Libro y la Lectura, Consejo. 365 pp

    Google Scholar 

  • Fløysand A, Haarstad H, Barton J (2010) Global economic imperatives, crisis generation and local spaces of engagement in the Chilean aquaculture industry. Norwegian J Geogr 64:199–210

    Google Scholar 

  • Guajardo AC (1970) Los asentamientos campesinos y las sociedades agrícolas de reforma agraria. Revista de Derecho Económico 31-32:69–116

    Google Scholar 

  • Marín A, Gelcich S (2012) Gobernanza y capital social en el co-manejo de recursos bentónicos en Chile: aportes del análisis de redes al estudio de la pesca artesanal de pequeña escala. Cuhso Cultura-Hombre-Sociedad 22:131–153

    Google Scholar 

  • Molinet C, Díaz M, Marín SL, Astorga MP, Ojeda M, Cares L, Asencio E (2017) Relation of mussel spatfall on natural and artificial substrates: analysis of ecological implications ensuring long-term success and sustainability for mussel farming. Aquaculture 467:211–218

    Google Scholar 

  • National Centers for Environmental Information (NCEI) (2018) The Southern Oscillation Index (SOI). https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/

  • Ortiz R, Párraga M, Navarrete J, Carrasco I, de la Vega E, Ortiz M, Herrera P, Jurgens JA, Blanchette RA (2014) Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile. Microb Ecol 67:568–575

    CAS  PubMed  Google Scholar 

  • Ramírez E, Modrego F, Macé JC, Yáñez R (2009) Caracterización de los actores de Chiloé Central. Documento de trabajo/Programa Dinámicas Territoriales Rurales. RIMISP-Centro Latinoamericano para el Desarrollo Rural; no. 55

    Google Scholar 

  • Urbina R (1996) Castro, castreños y chilotes: 1960-1990. Ediciones Universitarias de Valparaíso de la Universidad Católica de Valparaíso, Valparaíso. 354 pp

    Google Scholar 

  • Vargas D (2018) Reflexiones en torno al mayo chilote. https://www.lemondediplomatique.cl/Reflexiones-en-torno-al-mayo.html

  • Zanlungo M, Pablo J, Katz J, Araya G (2015) Servicios intensivos en conocimiento en la industria salmonera chilena. Inter-American Development Bank, Washington, DC. 61 pp

    Google Scholar 

  • Zegers G, Larraín J, Díaz MF, Armesto JJ (2006) Impacto ecológico y social de la explotación de pomponales y turberas de Sphagnum en la Isla Grande de Chiloé. Revista Ambiente y desarrollo 22:28–34

    Google Scholar 

References

  • Adger WN (2000) Social and ecological resilience: are they related? Prog Hum Geogr 24:347–364

    Google Scholar 

  • Ampuero D, Miranda CE, Delgado LE et al (2013) Empathy and critical thinking; primary students solving local environmental problems through outdoor learning. J Advent Educ Outdoor Learn 15:64–78

    Google Scholar 

  • Anderies JM, Janssen MA, Ostrom E (2004) A framework to analyse the robustness of social-ecological systems from an institutional perspective. Ecol Soc 9:18–35

    Google Scholar 

  • Arnorld-Cathalifaud M (2003) Fundamento del Constructivismo sociopoiético. Cinta Moebio 18:162–173

    Google Scholar 

  • Ávila VS, Perevochtchikova M (2018) Sistemas Socio-Ecológicos: Marcos Analíticos y Estudios de caso en Oaxaca. Universidad Nacional Autónoma de México, Instituto de Investigaciones Economicas, México, México

    Google Scholar 

  • Berger PL, Luhmann T (1968) La construcción social de la realidad. Amorrortu, Buenos Aires

    Google Scholar 

  • Berkes F, Folke C (2000) Linking social and ecological systems for resilience and sustainability. In: Berkes F, Folke C, Colding J (eds) Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press, Cambridge, pp 1–25

    Google Scholar 

  • Berkes F, Ross H (2013) Community resilience: toward an integrated approach. Soc Nat Resour 26:5–20

    Google Scholar 

  • Bio-Bio. (2013). Fallo-Celco. http://media.biobiochile.cl/wp-content/uploads/2013/07/Fallo-Celco.pdf. Accessed 9 Jun 2019

  • Bourdieu P (1986) The forms of capital. In: Richardson JG (ed) Handbook of theory and research for the sociology of education. Greenwood Press, New York, pp 241–258

    Google Scholar 

  • Bourdieu P (2001) Poder, derecho y clases sociales. Editorial Desclée de Brouwer, Bilbao

    Google Scholar 

  • Burkhard B, Kroll F, Nedkov S et al (2012) Mapping ecosystem service supply, demand and budgets. Ecol Indic 21:17–29

    Google Scholar 

  • Carpenter S, Mooney HA, Agard J et al (2009) Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc Natl Acad Sci U S A 106:1305–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cinner J, Fuentes M, Randriamahazo H (2009) Exploring social resilience in Madagascar’s marine protected areas. Ecol Soc 14:41–61

    Google Scholar 

  • Coleman JS (1990) Foundations of social theory. Harvard University Press, Cambridge

    Google Scholar 

  • Costanza R, d'Arge R, De Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • De Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408

    Google Scholar 

  • Delgado LE, Marín VH, Bachmann PL et al (2009) Conceptual models for ecosystem management through the participation of local social actors: the Río cruces wetland conflict. Ecol Soc 14(1):50. http://www.ecologyandsociety.org/vol14/iss1/art50/. Accessed 9 Jun 2019

    Google Scholar 

  • Delgado LE, Tironi A, Vila I et al (2014) El Humedal del Río Cruces, Valdivia, Chile: una síntesis ecosistémica. Lat Am J Aquat Res 42:937–949

    Google Scholar 

  • Delgado LE, Tironi-Silva A, Marín VH (2019) Sistemas socioecológicos y servicios ecosistémicos: modelos conceptuales para el humedal del Río Cruces (Valdivia, Chile). In: Cerda C, Silva-Rodriguez E, Briceño C (eds) Naturaleza en sociedad: Una mirada a la dimensión humana de la conservación de la biodiversidad. Editorial Ocho Libros, Santiago, pp 177–205

    Google Scholar 

  • Folchi DM (2001) Conflictos de contenido ambiental y ecologismo de los pobres: no siempre pobres, ni siempre ecologistas. Ecología política: cuadernos de debate internacional 22:79–100

    Google Scholar 

  • Guerrero-Gatica M, Aliste E, Simonetti JA (2019) Shifting gears for the use of the shifting baseline syndrome in ecological restoration. Sustainability 11(5):1458 https://doi.org/10.3390/su11051458 Accessed 9 Jun 2019

  • Gunderson L, Holling CS (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DC

    Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Google Scholar 

  • Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390–405

    Google Scholar 

  • Jaramillo E, Lagos N, Labra FA et al (2018) Recovery of black-necked swans, macrophytes and water quality in a Ramsar wetland of southern Chile: Assessing resilience following sudden anthropogenic disturbances. Sci Total Environ. 628–629: 291–301 https://doi.org/10.1016/j.scitotenv.2018.01.333 Accessed 9 Jun 2019

  • Kay JJ, Regier HA, Boyle M et al (1999) An ecosystem approach for sustainability: addressing the challenge of complexity. Futures 31:721–742

    Google Scholar 

  • Lawrence RJ, Després C (2004) Futures of transdisciplinarity. Futures 36:397–405

    Google Scholar 

  • López-Angarita J, Sánchez M, del Pilar R et al (2009) A socioecological resilience approach for evaluating management effectiveness of marine protected areas. Final report: NOAA CORAL Grant NA07NOS463002. https://repository.library.noaa.gov/view/noaa/589/noaa_589_DS1.pdf?. Accessed 9 Jun 2019

  • Maass M (2018) Los sistemas socioecológicos (SSE) desde el enfoque socioecosistémico (SES). In: Ávila VS, Perevochtchikova M (eds) Sistemas Socio-Ecológicos: Marcos Analíticos y Estudios de caso en Oaxaca, México. Universidad Nacional Autónoma de México, Instituto de Investigaciones Económicas, México, pp 19–66

    Google Scholar 

  • Marín VH, Delgado LE (2008) Conceptual PHES-system models of the Aysén watershed and fjord (southern Chile): a brainstorming strategy. J Environ Manage 88:1109–1118

    PubMed  Google Scholar 

  • Marín VH, Delgado LE (2013) From ecology to society and back: the (in) convenient hypothesis syndrome. Int J Sustain Dev 16:46–63

    Google Scholar 

  • Marín VH, Delgado LE, Bachmann P (2008) Conceptual PHES-system models of the Aysén watershed and fjord (southern Chile): testing a brainstorming strategy. J Environ Manage 88:1109–1118

    PubMed  Google Scholar 

  • Marín VH, Delgado LE, Tironi A (2015) Transdisciplina, sistemas y ecosistemas. In: Montecino V, Orlando J (eds) Ciencias ecológicas 1983-2013: treinta años de investigaciones chilenas. Editorial Universitaria, Santiago, pp 283–294

    Google Scholar 

  • Marín VH, Delgado LE, Tironi-Silva A et al (2018) Exploring social-ecological complexities of wetlands of international importance (Ramsar sites): the Carlos Anwandter Sanctuary (Valdivia, Chile) as a case study. Wetlands 38:1171–1182

    Google Scholar 

  • Matte-Varas JJ (1990) Tantauco: nobleza, patriotismo y fidelidad. Boletín de la Academia Chilena de la Historia N° 57, Santiago

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: Synthesis report. Millennium Ecosystem Assessment. Island Press, Washington, DC

    Google Scholar 

  • Müller F, Burkhard B (2012) The indicator side of ecosystem services. Ecosyst Serv 1:26–30

    Google Scholar 

  • Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, Cambridge

    Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422

    CAS  PubMed  Google Scholar 

  • Peluffo MB, Catalán Contreras E (2002) Introducción a la gestión del conocimiento y su aplicación al sector público. Series de la CEPAL. Instituto Latinoamericano y del Caribe de Planificación Social, Santiago

    Google Scholar 

  • Pérez-Orellana DC (2019) Uso histórico de los servicios ecosistémicos en la Isla Grande de Chiloé, Región de Los Lagos, Chile: una aproximación conceptual. Seminario de Título entregado a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al Título de Biólogo Ambiental. Facultad de Ciencias, Universidad de Chile, Santiago

    Google Scholar 

  • Pérez-Teruel K, Leyva-Vázquez L, Estrada V (2014) Proceso de concenso en modelos mentales y aplicación al desarrollo de software agíl en bioinformatica. Revista Cubana de Informatica en Ciencias de la salud 25(83):318–332

    Google Scholar 

  • Piccolo JJ (2017) Intrinsic values in nature: objective good or simply half of an unhelpful dichotomy. J Nat Conserv 27:8–11

    Google Scholar 

  • Piñero L (2008) La teoría de las representaciones sociales y la perspectiva de Pierre Bourdieu: Una Articulación conceptual. Revista de Investigación Educativa 7:1–19

    Google Scholar 

  • Pomeroy RS, Parks JE, Watson LM (2004) How is your MPA doing? A guidebook of natural and social indicators for evaluating marine protected area management effectiveness. IUCN, Gland

    Google Scholar 

  • Popper K (1962) La lógica de la investigación científica. Editorial Tecnos, Madrid

    Google Scholar 

  • Prieto Barboza EA (2013) Resiliencia y panarquía: claves para enfrentar la adversidad en sistemas sociales. Multiciencias 13(1):23–29

    Google Scholar 

  • Rincón-Ruiz A, Arias-Arévalo P, Núñez JM et al (2019) Applying integrated valuation of ecosystem services in Latin America: insights from 21 case studies. Ecosyst Serv 36:1–12

    Google Scholar 

  • Rozzi R (2019) Áreas Protegidas y Ética Biocultural. In: Cerda C, Silva-Rodriguez E, Briceño C (eds) Naturaleza en sociedad: Una mirada a la dimensión humana de la conservación de la biodiversidad. Editorial OchoLibros, Santiago, pp 25–69

    Google Scholar 

  • Sletto BI (2010) Autogestión en representaciones espaciales indígenas y el rol de la capacitación y concientización: el caso del Proyecto Etnocartográfico Inna Kowantok, Sector 5 Pemón (Kavanayén-Mapauri). La Gran Sabana Antropológica 53(113):43–75

    Google Scholar 

  • Wickson F, Carew AL, Russell A (2006) Transdisciplinary research: characteristics, quandaries and quality. Futures 38(9):1046–1059

    Google Scholar 

  • Yu Iwama A, Delgado LE (2018) Acción: Participación Comunitaria en Procesos de decisión en la Conservación del territorio. Cuadernos del Pensamiento Crítico Latinoamericano 56:1–3

    Google Scholar 

Download references

Acknowledgements

The work contained in this chapter was financed by CONICYT-Chile FONDECYT Grant N° 1170532 awarded to L. Delgado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa E. Delgado .

Editor information

Editors and Affiliations

Annex I

Annex I

Phases of the social-ecological system (SES)/Ecosystem services (ES) adaptive model for Chiloé Island. All cited bibliographic references are listed at the end of this annex. RS-E social-ecological resilience, RS social resilience and RE ecological resilience.

r phase (i) (1825–1960): rapid growth, the potential of both subsystems increases while their connectivity is low.

RS-E: Moderate RS and high RE. Human activities changed after the island was incorporated to the Chilean territory with more options and a growing trend of the connectivity within the SSE. Ecosystem services were used mostly as provisioning for subsistence.

In 1850 agriculture decreases in intensity, being replaced by industrial activities (e.g. sea lion hunting and native wood cutting) in the south of the island (Cárdenas and Villagrán 2005). In 1900 some agricultural activities restart, positioning the island as the main producer of potatoes by the year 1950.

Ω phase (i) (1960–1967): collapse, where exogenous and endogenous perturbations generate crises within the SES.

RS-E: Low. Both subsystems do not show adaptive capabilities after the 1960 mega earthquake. There is an increase in human emigration and the ecological subsystem changes after the sinking of coastal areas, generating an increase in coastal wetlands and a social-ecological crisis (Urbina 1996; Andrade 2017).

α phase (1967–1974): reorganization, after the perturbation (mega earthquake) several innovations start, moving the SES to a new adaptive cycle.

RS-E: high for both subsystems. There is a diversification of economic activities and uses of ecosystem services. One of the main social products is the generation of mutual cooperation networks, cooperatives and new extractive activities both in terrestrial and marine ecosystems (Guajardo 1970; Altieri and Rojas 1999).

r phase (ii) (1974–1996): rapid growth, the potential of both subsystems is increased but with low connectivity.

RS-E: Moderate RS and high RE. Human activities adjust to re-organization processes and there is an increase in the use of ecosystem services. This period shows an increase in human capital (professionals and technicians) required by the newly developing industries (Zanlungo et al. 2015). However, union social capital decreases due to the military dictatorship in Chile (1973–1990). One example is the end of the use of fishing pens (corrales de pesca in Spanish), a tradition in Chiloé (Ramírez et al. 2009). Also, during this period, artisan fishermen start organizing in communities and cooperatives as a consequence of the general law of fisheries and aquaculture (Marín and Gelcich 2012). In 1980 there is a sudden increase in economic resources due to the expansion of salmon farming on the island (Fløysand et al. 2010). Later, during the 1990s, diverse pathologies derived from salmon farming started appearing, generating the need to use antibiotics to maintain the fish population.

K phase (1996–2007): conservation, characterized by the accumulation of resources, increase in connectivity but also the monopoly of human activities leading toward an increase in vulnerability.

RS-E: moderate RE and low RS. The SES becomes rigid, where the exportation of marine products becomes the social-economic basis of local society. The coastal ecosystem starts showing an increase of harmful algal blooms such as Alexandrium catenella during 2002 and 2006 (Molinet et al. 2017). Terrestrial ecosystems start changing due to the modification of the Chilean law regarding forestry (D.L. 701/1998) and the exploitation of mosses, Sphagnum spp. (Zegers et al. 2006). Finally, the island starts receiving tourists due to the declaration of the island’s churches as world heritage sites by UNESCO (Ortiz et al. 2014).

Ω phase (ii) (2007–?): collapse, due to the outbreak of the Infectious Salmon Anemia (ISA) virus and recurrent harmful algal blooms (NCEI 2018).

RS-E: low. This collapse phase, generated by a sanitary crisis, revealed a low social and ecological resilience, triggering social protests locally known as “mayo Chilote” (Chilote’s may; Vargas 2018). The Chilean State resolves to provide subsidies to local people, decreasing, even more, their adaptive capabilities. Finally, during the year 2015 FAO expresses its concern about the low recruitment in mussel’s banks in Chiloé coastal waters.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado, L.E., Pérez-Orellana, D.C., Marín, V.H. (2019). Simplifying the Complexity of Social-ecological Systems with Conceptual Models. In: Delgado, L., Marín, V. (eds) Social-ecological Systems of Latin America: Complexities and Challenges. Springer, Cham. https://doi.org/10.1007/978-3-030-28452-7_2

Download citation

Publish with us

Policies and ethics