Skip to main content

Black Carbon, Maritime Traffic and the Arctic

Part of the Springer Polar Sciences book series (SPPS)

Abstract

Maritime transportation covers approximately 90% of the global traffic volumes. The global fleet consists of approximately 100,000 diesel ships, around 250 LNG ships, and a smaller number of methanol or even electric ferries. When it comes to maritime transportation, the Arctic sea route is becoming more and more interesting for the shipping industry as it has been estimated that the Northeast Passage can shorten the travelling distance significantly compared to Suez Canal.

Black Carbon (BC) is the second largest contributor to climate change emissions after carbon dioxide (CO2). BC particles spread out from different sources and the majority of BC emissions are transmitted to the Polar Regions from other parts of the globe. The share of global BC emission from international shipping is estimated to be up to 3% of the global total.

The Northern Sea Route can shorten the travelling distance, but it is important to find out, will the increase of maritime traffic effect the BC emissions in the Arctic. This paper considers how BC from ships’ fuel affects the Arctic. This paper also discusses alternative fuels and emission abatement technologies, which can decrease the emissions from ships and may also affect the BC emissions in the Arctic in the future.

Keywords

  • Black carbon
  • Emission abatement
  • Arctic
  • Ship traffic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-28404-6_8
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-28404-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3

References

  • Aakko-Saksa, P., Murtonen, T., Vesala, H., Koponen, P., Timonen, H., Teinilä, K., Aurela, M., Karjalainen, P., Kuittinen, N., Puustinen, H., Piimäkorpi, P., Nyyssönen, S., Martikainen, J., Kuusisto, J., Niinistö, M., Pellikka, T., Saarikoski, S., Jokela, J., Simonen, P., Mylläri, F., Wihersaari, H., Rönkkö, T., Tutuianu, M., Pirjola, L., & Malinen, A. (2017). Black carbon emissions from a ship engine in laboratory (SEA-EFFECTS BC WP1) (Report VTT-R-02075-17).

    Google Scholar 

  • AMAP. (2011). The impact of black carbon on Arctic climate (P. K. Quinn, A. Stohl, A. Arneth, T. Berntsen, J. F. Burkhart, J. Christensen, M. Flanner, K. Kupiainen, H. Lihavainen, M. Shepherd, V. Shevchenko, H. Skov, & V. Vestreng, Eds.). Oslo: Arctic Monitoring and Assessment Programme (AMAP).

    Google Scholar 

  • AMAP. (2015). Black carbon and ozone as Arctic climate forcers. Oslo: Arctic Monitoring and Assessment Programme (AMAP).

    Google Scholar 

  • Aplin, J. (2015). Five things the shipping industry needs to know about black carbon. Available at URL: know-about-black-carbon.

    Google Scholar 

  • Azzara, A., Minjares, R. and Rutherford, D. (2015). Needs and opportunities to reduce black carbon emissions from maritime shipping. The International Council on Clean Transport (ICCT). Working Paper 2015-2. Available at URL: https://theicct.org/sites/default/files/publications/ICCT_black-carbon-maritimeshipping_20150324.pdf

  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., & Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research-Atmospheres, 118(11), 5380–5552.

    CAS  CrossRef  Google Scholar 

  • Brunila, O.-P., Ala-Rämi, K., Inkinen, T. & Hämäläinen, E. (2017). Black carbon measurement in the Arctic – Is there a business potential? Final report of the work package 3 in the sea effects black carbon project. Publications of Centre for Maritime Studies, University of Turku. A 73, 2017 Turku, Finland. ISBN 978–951–29–6983–8 (PDF).

    Google Scholar 

  • CIMAC. (2012). Background information on black carbon emissions from large marine and stationary diesel engines – definition, measurement methods, emission factors and abatement technologies. The International Council on Combustion Engines.

    Google Scholar 

  • Corbett, J. J., Wang, C., Winebrake, J. J., & Green, E. (2007). Allocation and forecasting of global ship emissions. Prepared for the clean air task force. Boston.

    Google Scholar 

  • Corbett, J. J., Lack, D. A., Winebrake, J. J., Harder, S., Silberman, J. A., & Gold, M. (2010). Arctic shipping emissions inventories and future scenarios. Atmospheric Chemistry and Physics, 10, 9689–9704.

    CAS  CrossRef  Google Scholar 

  • Dalsøren, S., Eide, M., Myhre, G., Endresen, O., Isaksen, I., & Fuglestvedt, J. (2010). Impacts of the large increase in international ship traffic 2000–2007 on tropospheric ozone and methane. Environmental Science & Technology, 44, 2482–2489.

    CrossRef  Google Scholar 

  • Dalsøren, S. B., Samset, B. H., Myhre, G., Corbett, J. J., MInjares, R., Lack, D., & Fuglestvedt, J. S. (2013). Environment impacts of shipping in 2030 with a particular focus on the Arctic region. Atmospheric Chemistry and Physics, 13, 1941–1955.

    CrossRef  Google Scholar 

  • Flanner, M. G. (2013). Arctic climate sensitivity to local black carbon. Journal of Geophysical Research-Atmospheres, 118, 1840–1851.

    CAS  CrossRef  Google Scholar 

  • Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. (2007). Present-day climate forcing and response from black carbonin snow. Journal of Geophysical Research-Atmospheres, 112, 2007.

    CrossRef  Google Scholar 

  • Fuglestvedt, J., Berntsen, T., Eyring, V., Isaksen, I., Lee, D. S., & Sausen, R. (2009). Shipping emissions: From cooling to warming of climate and reducing impacts on health. Environmental Science & Technology, 43, 9057–9062.

    CAS  CrossRef  Google Scholar 

  • IMO. (2015). Investigation of appropriate control measures (abatement technologies) to reduce black carbon emissions from international shipping (p. 2015). London: International Maritime Organization.

    Google Scholar 

  • Kiiski, T. (2017). Feasibility of commercial cargo shipping along the Northern Sea Route (p. E12). Turku: Publications of University of Turku.

    Google Scholar 

  • Lund, M. T., Berntsen, T. K., Heyes, C., Klimot, Z., & Samser, B. H. (2014). Gloal and regional climate impacts of black carbon and co-emitted species from on-road diesel sector. Atmospheric Environment, 98, 50–58.

    CAS  CrossRef  Google Scholar 

  • Makkonen, T., & Inkinen, T. (2018). Sectoral and technological systems of environmental innovation: The case of marine scrubber systems. Journal of Cleaner Production, 200, 110–121.

    CrossRef  Google Scholar 

  • Mjelde, A., Martinsen, K., Eide, M., & Endresen, O. (2014). Environmental accounting for Arctic shipping – A framework building on ships tracking data from satellites. Marine Pollution Bulletin, 87(1–2), 22–28.

    CAS  CrossRef  Google Scholar 

  • Mukanda, M. G. M., Babu, S., Moorthy, K., Thakur, R., Chaubey, J., & Nair, V. (2015). Aerosol black carbon over svalbard regions of arctic. Polar Science, 10, 1–11.

    Google Scholar 

  • Mukunda, M. G., Babu, S. S., Pandey, S. K., Nair, V. S., Vaishya, A., Girach, I. A., & Koushik, G. N. (2018). Scavening ratio of black carbon in the Arctic and the Antarctic. Polar Science, 16, 10–22.

    Google Scholar 

  • Northern Sea Route Administration. (2017). Vessel activity. Northern Sea Route Administration. Available at URL: < http://www.nsra.ru/en/home.html>

  • Petzlod, A., Orgen, J. A., Fiebig, M., Li, S. M., Baltensperger, U., Holtzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Whrli, C., Wiedensohler, A., & Zhang, X. Y. (2013). Recommendation for reporting “Black Carbon” measurements. Atmospheric Chemistry and Physics, 13, 8365–8379.

    CrossRef  Google Scholar 

  • Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., & Warren, S. G. (2008). Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 8(6), 1723–1735.

    CAS  CrossRef  Google Scholar 

  • Rubbel M. M. (2015). Black carbon deposition in the European Arctic from the preindustrial to the pre-sent. Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae. ISSN 2342–5423 (print).

    Google Scholar 

  • Sand, M., Berntsen, T. K., von Salzen, K., Flanner, M. G., Langner, J., & Victor, D. G. (2016). Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nature Climate Change, 62(016), 286–289.

    CrossRef  Google Scholar 

  • Timonen, H., Aakko-Saksa, P., Kuittinen, N., Karjalainen, P., Murtonen, T., Lehtoranta, K., Vesala, H., Bloss, M., Saarikoski, S., Koponen, P., Piimäkorpi, P. & Rönkkö, T. (2017). Black carbon measurement validation onboard (SEA-EFFECTS BC WP2) (Report VTT-R-04493-1).

    Google Scholar 

  • Twigg, M. (2009). Cleaning the air we breathe – controlling diesel particulate emissions from passenger cars. Platinum Metals Review, 53, 27–34.

    CAS  CrossRef  Google Scholar 

  • Vihanninjoki, V. (2014). Arctic shipping emissions in the changing climate. Reports of the Finnish Environment Institute 41/2014.

    Google Scholar 

  • VITO. (2013). Specific evaluation of emissions from shipping including assessment for the establishment of possible new emission control areas in European Seas. Paul Campling, P., Janssen, L., Vanherle, K., Cofala, J., Heyes, C. & Sander, R.Vision on Technology (VITO), Belgium.

    Google Scholar 

  • Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., & Gustafsson, Ö. (2016). The sources of atmospheric black carbon at a European gateway to the Arctic. Nature Communications, 7, 12776.

    CAS  CrossRef  Google Scholar 

  • Winther, M., Christensen, J. H., Plejdrup, M. S., Ravn, E. S., Eriksson, Ó. F., & Kristenssen, H. O. (2014). Emission inventories for ships in the Arctic based on satellite sampled AIS data. Atmospheric Environment, 91, 1–14.

    CAS  CrossRef  Google Scholar 

  • Yliskylä-Peuralahti, J., Ala-Rämi, K., Rova, R., Kolli, T., & Pongracz, E. (2016). Matching safety and environmental regulations regarding the Inter-national maritime organization’s polar code in Finland (POLARCODE). Publications of the govenrment’s analysis, assessment and research activities 11/2016. Prime Minister’s office, March 14th, 2016.

    Google Scholar 

  • Yumashev, D., van Hussen, K., Gille, J., & Whiteman, G. (2017). Towards a balanced view of Arctic shipping: estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Climatic Change, 143, 143–155.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli-Pekka Brunila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Brunila, OP., Inkinen, T., Kunnaala-Hyrkki, V., Hämäläinen, E., Ala-Rämi, K. (2020). Black Carbon, Maritime Traffic and the Arctic. In: Pongrácz, E., Pavlov, V., Hänninen, N. (eds) Arctic Marine Sustainability. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-28404-6_8

Download citation