Skip to main content

Retinal Pigment Epithelium Organ Culture

  • 582 Accesses

Abstract

Retinal pigment epithelium (RPE) organ culture is defined here as the preservation of tissue explants including RPE monolayer in a living state over defined period of time, with the purpose to study a living RPE. There are mainly two different types of RPE organ culture; RPE-choroid organ culture and RPE-choroid-sclera organ culture. As a culture system, there are static and perfusion culture systems. The co-cultivation with the neural retina is also one of the options. As studies with RPE organ culture serve as an intermediary role as a bridge between in vitro and in vivo studies, proper knowledge about the RPE organ culture might be quite helpful for the choice of the appropriate experimental model for each study. In this chapter, different types and systems of RPE organ culture are introduced, with their morphological and functional characteristics, as well as advantage and disadvantages. Finally their possible applications in ophthalmic research are introduced from previous and ongoing studies.

Keywords

  • Retinal pigment epithelium (RPE)
  • Organ culture
  • Eye cup
  • RPE-choroid explant
  • RPE-choroid-sclera explant
  • Static culture
  • Perfusion culture
  • Tissue preservation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-28384-1_18
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-28384-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 18.1
Fig. 18.2
Fig. 18.3
Fig. 18.4
Fig. 18.5
Fig. 18.6

References

  1. Kirby DB. Tissue culture in ophthalmic research. Trans Am Ophthalmol Soc. 1929;27:334–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith DT. Melanin pigment in the pigmented epithelium of the retina of the embryo chick’s eyes: studies in vivo and in vitro. Acat Rec. 1920;18:260.

    Google Scholar 

  3. Smith DT. The ingestion of melanin pigment granules by tissue cultures. Bull Johns Hopkins Hosp. 1921;22:240.

    Google Scholar 

  4. Strangeways TS, Canti RG. Dark-ground illumination of tissue cells cultivated “in vitro”. Br Med J. 1926;2(3420):155–7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Strangeways TS, Fell HB. Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro.—II. The development of the isolated early embryonic eye of the fowl when cultivated in vitro. Proc R Soc B. 1926;100(703):273–83.

    CrossRef  Google Scholar 

  6. Albert DM, Tso MO, Rabson AS. In vitro growth of pure cultures of retinal pigment epithelium. Arch Ophthalmol. 1972;88(1):63–9.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Barishak YR. In vitro behaviour of the pigmented cells of the retina and uvea of the adult human eye. Acta Ophthalmol. 1960;38:339–46.

    CrossRef  CAS  Google Scholar 

  8. Tso MO, Albert D, Zimmerman LE. Organ culture of human retinal pigment epithelium and choroid: a model for the study of cytologic behavior of RPE in vitro. Investig Ophthalmol. 1973;12(8):554–66.

    CAS  Google Scholar 

  9. Eagle H. Amino acid metabolism in mammalian cell cultures. Science. 1959;130(3373):432–7.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA. 1967;199(8):519–24.

    CrossRef  CAS  PubMed  Google Scholar 

  11. Frambach DA, Valentine JL, Weiter JJ. Initial observations of rabbit retinal pigment epithelium-choroid-sclera preparations. Invest Ophthalmol Vis Sci. 1988;29(5):814–7.

    CAS  PubMed  Google Scholar 

  12. Hughes BA, Miller SS, Machen TE. Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state. J Gen Physiol. 1984;83(6):875–99.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Miller SS, Edelman JL. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990;424:283–300.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller SS, Steinberg RH. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977;36(4):337–72.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Steinberg RH, Miller SS, Stern WH. Initial observations on the isolated retinal pigment epithelium-choroid of the cat. Invest Ophthalmol Vis Sci. 1978;17(7):675–8.

    CAS  PubMed  Google Scholar 

  16. Steuer H, Jaworski A, Stoll D, Schlosshauer B. In vitro model of the outer blood-retina barrier. Brain Res Brain Res Protoc. 2004;13(1):26–36. https://doi.org/10.1016/j.brainresprot.2003.12.002.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Del Priore LV, Glaser BM, Quigley HA, Dorman ME, Green WR. Morphology of pig retinal pigment epithelium maintained in organ culture. Arch Ophthalmol. 1988;106(9):1286–90.

    CrossRef  PubMed  Google Scholar 

  18. McKechnie NM, Keegan WA, Converse CA, Foulds WS. Short-term organ culture of the retinal pigment epithelium in microtitration plates: ultrastructural studies. Graefes Arch Clin Exp Ophthalmol. 1986;224(5):401–6.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Hergott GJ, Kalnins VI. Expression of proliferating cell nuclear antigen in migrating retinal pigment epithelial cells during wound healing in organ culture. Exp Cell Res. 1991;195(2):307–14.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Hergott GJ, Nagai H, Kalnins VI. Inhibition of retinal pigment epithelial cell migration and proliferation with monoclonal antibodies against the beta 1 integrin subunit during wound healing in organ culture. Invest Ophthalmol Vis Sci. 1993;34(9):2761–8.

    CAS  PubMed  Google Scholar 

  21. Hergott GJ, Sandig M, Kalnins VI. Cytoskeletal organization of migrating retinal pigment epithelial cells during wound healing in organ culture. Cell Motil Cytoskeleton. 1989;13(2):83–93. https://doi.org/10.1002/cm.970130203.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Feeney L, Mixon RN. An in vitro model of phagocytosis in bovine and human retinal pigment epithelium. Exp Eye Res. 1976;22(5):533–48.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Goldhar SW, Basu PK, Ranadive NS. Phagocytosis by retinal pigment epithelium: evaluation of modulating agents with an organ culture model. Can J Ophthalmol. 1984;19(1):33–5.

    CAS  PubMed  Google Scholar 

  24. Rosenstock T, Basu R, Basu PK, Ranadive NS. Quantitative assay of phagocytosis by retinal pigment epithelium: an organ culture model. Exp Eye Res. 1980;30(6):719–29.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Minuth WW, Stockl G, Kloth S, Dermietzel R. Construction of an apparatus for perfusion cell cultures which enables in vitro experiments under organotypic conditions. Eur J Cell Biol. 1992;57(1):132–7.

    CAS  PubMed  Google Scholar 

  26. Framme C, Kobuch K, Eckert E, Monzer J, Roider J. RPE in perfusion tissue culture and its response to laser application. Preliminary report. Ophthalmologica. 2002;216(5):320–8. https://doi.org/66184.

    CrossRef  PubMed  Google Scholar 

  27. Klettner A, Roider J. Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci. 2008;49(10):4523–7. https://doi.org/10.1167/iovs.08-2055.

    CrossRef  PubMed  Google Scholar 

  28. Saikia P, Maisch T, Kobuch K, Jackson TL, Baumler W, Szeimies RM, Gabel VP, Hillenkamp J. Safety testing of indocyanine green in an ex vivo porcine retina model. Invest Ophthalmol Vis Sci. 2006;47(11):4998–5003. https://doi.org/10.1167/iovs.05-1665.

    CrossRef  PubMed  Google Scholar 

  29. Hammer M, Richter S, Kobuch K, Mata N, Schweitzer D. Intrinsic tissue fluorescence in an organotypic perfusion culture of the porcine ocular fundus exposed to blue light and free radicals. Graefes Arch Clin Exp Ophthalmol. 2008;246(7):979–88. https://doi.org/10.1007/s00417-008-0789-4.

    CrossRef  PubMed  Google Scholar 

  30. Miura Y, Klettner A, Noelle B, Hasselbach H, Roider J. Change of morphological and functional characteristics of retinal pigment epithelium cells during cultivation of retinal pigment epithelium-choroid perfusion tissue culture. Ophthalmic Res. 2010;43(3):122–33. https://doi.org/10.1159/000252979.

    CrossRef  PubMed  Google Scholar 

  31. Klettner A. Oxidative stress induced cellular signaling in RPE cells. Front Biosci. 2012;4:392–411.

    CrossRef  Google Scholar 

  32. Klettner A, Westhues D, Lassen J, Bartsch S, Roider J. Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway. Mol Vis. 2013;19:281–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miura Y. Evaluation of mitochondrial function of the retinal tissue with FLIO. In: Paper presented at the FLIM2018, Berlin. 2018.

    Google Scholar 

  34. Miura Y, Huettmann G, Orzekowsky-Schroeder R, Steven P, Szaszak M, Koop N, Brinkmann R. Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress. Invest Ophthalmol Vis Sci. 2013;54(5):3366–77. https://doi.org/10.1167/iovs.13-11808.

    CrossRef  PubMed  Google Scholar 

  35. Gallemore RP, Steinberg RH. Effects of DIDS on the chick retinal pigment epithelium. I. Membrane potentials, apparent resistances, and mechanisms. J Neurosci. 1989;9(6):1968–76.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imanishi Y, Sun W, Maeda T, Maeda A, Palczewski K. Retinyl ester homeostasis in the adipose differentiation-related protein-deficient retina. J Biol Chem. 2008;283(36):25091–102. https://doi.org/10.1074/jbc.M802981200.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Nagai H, Kalanins VI. An apical tension-sensitive microfilament system in retinal pigment epithelial cells. Exp Cell Res. 1996;223(1):63–71.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Sandig M, Kalnins VI. Morphological changes in the zonula adhaerens during embryonic development of chick retinal pigment epithelial cells. Cell Tissue Res. 1990;259(3):455–61.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Chiba C, Nakamura K, Unno S, Saito T. Intraocular implantation of DNA-transfected retinal pigment epithelium cells: a new approach for analyzing molecular functions in the newt retinal regeneration. Neurosci Lett. 2004;368(2):171–5. https://doi.org/10.1016/j.neulet.2004.07.009.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Yoshikawa T, Mizuno A, Yasumuro H, Inami W, Vergara MN, Del Rio-Tsonis K, Chiba C. MEK-ERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt. Pigment Cell Melanoma Res. 2012;25(1):66–82. https://doi.org/10.1111/j.1755-148X.2011.00935.x.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Frambach DA, Valentine JL, Weiter JJ. Topical phenylephrine for mydriasis affects rabbit retinal pigment epithelial transport. Invest Ophthalmol Vis Sci. 1989;30(2):343–4.

    CAS  PubMed  Google Scholar 

  42. Delpriore LV, Glaser BM, Quigley HA, Green WR. Response of pig retinal-pigment epithelium to laser photocoagulation in organ-culture. Arch Ophthalmol. 1989;107(1):119–22.

    CrossRef  CAS  Google Scholar 

  43. Kaempf S, Johnen S, Salz AK, Weinberger A, Walter P, Thumann G. Effects of bevacizumab (Avastin) on retinal cells in organotypic culture. Invest Ophthalmol Vis Sci. 2008;49(7):3164–71. https://doi.org/10.1167/iovs.07-1265.

    CrossRef  PubMed  Google Scholar 

  44. Klettner A, Kaya L, Flach J, Lassen J, Treumer F, Roider J. Basal and apical regulation of VEGF-A and placenta growth factor in the RPE/choroid and primary RPE. Mol Vis. 2015;21:736–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Treumer F, Klettner A, Baltz J, Hussain AA, Miura Y, Brinkmann R, Roider J, Hillenkamp J. Vectorial release of matrix metalloproteinases (MMPs) from porcine RPE-choroid explants following selective retina therapy (SRT): towards slowing the macular ageing process. Exp Eye Res. 2012;97(1):63–72. https://doi.org/10.1016/j.exer.2012.02.011.

    CAS  CrossRef  PubMed  Google Scholar 

  46. Chiba C, Hoshino A, Nakamura K, Susaki K, Yamano Y, Kaneko Y, Kuwata O, Maruo F, Saito T. Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt. J Comp Neurol. 2006;495(4):391–407. https://doi.org/10.1002/cne.20880.

    CAS  CrossRef  PubMed  Google Scholar 

  47. Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MA, Harlizius B, Lee KT, Milan D, Rogers J, Rothschild MF, Uenishi H, Wang J, Schook LB, Swine Genome Sequencing Consortium. Pig genome sequence—analysis and publication strategy. BMC Genomics. 2010;11:438. https://doi.org/10.1186/1471-2164-11-438.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Middleton S. Porcine ophthalmology. Vet Clin North Am Food Anim Pract. 2010;26(3):557–72. https://doi.org/10.1016/j.cvfa.2010.09.002.

    CrossRef  PubMed  Google Scholar 

  49. Olsen TW, Sanderson S, Feng X, Hubbard WC. Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci. 2002;43(8):2529–32.

    PubMed  Google Scholar 

  50. Prince JH. Anatomy and histology of the eye and orbit in domestic animals. Springfield: C.C. Thomas; 1960.

    Google Scholar 

  51. Koinzer S, Schlott K, Ptaszynski L, Bever M, Kleemann S, Saeger M, Baade A, Caliebe A, Miura Y, Birngruber R, Brinkmann R, Roider J. Temperature-controlled retinal photocoagulation—a step toward automated laser treatment. Invest Ophthalmol Vis Sci. 2012;53(7):3605–14. https://doi.org/10.1167/iovs.11-8588.

    CrossRef  PubMed  Google Scholar 

  52. Sher A, Jones BW, Huie P, Paulus YM, Lavinsky D, Leung LS, Nomoto H, Beier C, Marc RE, Palanker D. Restoration of retinal structure and function after selective photocoagulation. J Neurosci. 2013;33(16):6800–8. https://doi.org/10.1523/JNEUROSCI.1044-12.2013.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Spering HG. Laser eye effects. Washington, DC: The National Academies Press; 1968.

    Google Scholar 

  54. Myers AC, Lovestam Adrian M, Bruun A, Ghosh F, Andreasson S, Ponjavic V. Retinal function and morphology in rabbit after intravitreal injection of VEGF inhibitors. Curr Eye Res. 2012;37(5):399–407. https://doi.org/10.3109/02713683.2011.611609.

    CAS  CrossRef  PubMed  Google Scholar 

  55. Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF. Human sclera: thickness and surface area. Am J Ophthalmol. 1998;125(2):237–41.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Flaxel C, Bradle J, Acott T, Samples JR. Retinal pigment epithelium produces matrix metalloproteinases after laser treatment. Retina. 2007;27(5):629–34. https://doi.org/10.1097/01.iae.0000249561.02567.fd.

    CrossRef  PubMed  Google Scholar 

  57. Nicolaissen B, Allen C, Nicolaissen A, Arnesen K. Human retinal-pigment epithelium in long-term explant culture. Acta Ophthalmol. 1986;64(1):1–8.

    CrossRef  Google Scholar 

  58. Nicolaissen B Jr, Davanger M, Arnesen K. Surface morphology of explants from the human retinal pigment epithelium in culture. A scanning electron microscopic study. Acta Ophthalmol. 1982;60(6):881–93.

    CrossRef  Google Scholar 

  59. Wang H, Ninomiya Y, Sugino IK, Zarbin MA. Retinal pigment epithelium wound healing in human Bruch’s membrane explants. Invest Ophthalmol Vis Sci. 2003;44(5):2199–210. https://doi.org/10.1167/iovs.02-0435.

    CrossRef  PubMed  Google Scholar 

  60. LaVail MM. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science. 1976;194(4269):1071–4.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Sethna S, Finnemann SC. Analysis of photoreceptor rod outer segment phagocytosis by RPE cells in situ. Methods Mol Biol. 2013;935:245–54. https://doi.org/10.1007/978-1-62703-080-9_17.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Ikegami Y, Mitsuda S, Araki M. Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration. J Neurobiol. 2002;50(3):209–20. https://doi.org/10.1002/Neu.10031.

    CrossRef  PubMed  Google Scholar 

  63. Nicolaissen B Jr, Kolstad A, Arnesen K. Reactive changes in the human retinal pigment epithelium in vitro. Acta Ophthalmol. 1981;59(4):476–84.

    CrossRef  Google Scholar 

  64. Hutfilz A, Lewke B, Miura Y. Fluorescence lifetime imaging ophthalmoscopy of the retinal pigment epithelium during wound healing after selective retina treatment. In: Buzug TH, Heinz, Klein, Stephan, editors. Student Conference 2018 Lübeck. Infinite Science Publishing; 2018. p. 101–4.

    Google Scholar 

  65. Richert E, Koinzer S, Tode J, Schlott K, Brinkmann R, Hillenkamp J, Klettner A, Roider J. Release of different cell mediators during retinal pigment epithelium regeneration following selective retina therapy. Invest Ophthalmol Vis Sci. 2018;59(3):1323–31. https://doi.org/10.1167/iovs.17-23163.

    CAS  CrossRef  PubMed  Google Scholar 

  66. Kita M, Marmor MF. Effects on retinal adhesive force in vivo of metabolically active agents in the subretinal space. Invest Ophthalmol Vis Sci. 1992;33(6):1883–7.

    CAS  PubMed  Google Scholar 

  67. Marmor MF, Yao XY. The metabolic dependency of retinal adhesion in rabbit and primate. Arch Ophthalmol. 1995;113(2):232–8.

    CrossRef  CAS  PubMed  Google Scholar 

  68. Luke M, Weiergraber M, Brand C, Siapich SA, Banat M, Hescheler J, Luke C, Schneider T. The isolated perfused bovine retina—a sensitive tool for pharmacological research on retinal function. Brain Res Brain Res Protoc. 2005;16(1–3):27–36. https://doi.org/10.1016/j.brainresprot.2005.09.001.

    CAS  CrossRef  PubMed  Google Scholar 

  69. Jablonski MM, Tombran-Tink J, Mrazek DA, Iannaccone A. Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal. J Neurosci. 2000;20(19):7149–57.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ussing HH, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951;23(2–3):110–27. https://doi.org/10.1111/j.1748-1716.1951.tb00800.x.

    CAS  CrossRef  PubMed  Google Scholar 

  71. McAteer JA, Hegre OD. A continuous-flow method of organ culture. In Vitro. 1978;14(9):795–803.

    CrossRef  CAS  PubMed  Google Scholar 

  72. Rose GG, Kumegawa M, Nikai H, Bracho M, Cattoni M. The dual-rotary circumfusion system for mark II culture chambers. I. Design, control, and monitoring of the system and the cultures. Microvasc Res. 1970;2(1):24–60.

    CrossRef  CAS  PubMed  Google Scholar 

  73. Robb WL. Thin silicone membranes—their permeation properties and some applications. Ann N Y Acad Sci. 1968;146(1):119–37.

    CrossRef  CAS  PubMed  Google Scholar 

  74. Pegg DE, Fuller BJ, Foreman J, Green CJ. The choice of plastic tubing for organ perfusion experiments. Cryobiology. 1972;9(6):569–71.

    CrossRef  CAS  PubMed  Google Scholar 

  75. Miura Y. Retinal pigment epithelium-choroid organ culture. Expert Rev Ophthalmol. 2011;6(6):669–80. https://doi.org/10.1586/eop.11.70.

    CrossRef  Google Scholar 

  76. Sugiura S, Sakai Y, Nakazawa K, Kanamori T. Superior oxygen and glucose supply in perfusion cell cultures compared to static cell cultures demonstrated by simulations using the finite element method. Biomicrofluidics. 2011;5(2):22202. https://doi.org/10.1063/1.3589910.

    CAS  CrossRef  PubMed  Google Scholar 

  77. Bonilha VL. Age and disease-related structural changes in the retinal pigment epithelium. Clin Ophthalmol. 2008;2(2):413–24.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  78. Abdal Monaim M, Suleiman JH, Ashraf M. Morphological recovery in the reattached retina of the toad Bufo marinus: a new experimental model of retinal detachment. Arch Med Res. 2005;36(2):107–12. https://doi.org/10.1016/j.arcmed.2004.12.013.

    CrossRef  PubMed  Google Scholar 

  79. Anderson DH, Guerin CJ, Erickson PA, Stern WH, Fisher SK. Morphological recovery in the reattached retina. Invest Ophthalmol Vis Sci. 1986;27(2):168–83.

    CAS  PubMed  Google Scholar 

  80. Tsuboi S, Pederson JE, Toris CB. Functional recovery of retinal pigment epithelial damage in experimental retinal detachment. Invest Ophthalmol Vis Sci. 1987;28(11):1788–94.

    CAS  PubMed  Google Scholar 

  81. Essner E, Roszka JR, Schreiber JH. Phagocytosis and surface morphology in cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1978;17(11):1040–8.

    CAS  PubMed  Google Scholar 

  82. Campochiaro PA. Cytokine production by retinal pigmented epithelial cells. Int Rev Cytol. 1993;146:75–82.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK, Kwon OW. Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci. 2010;51(2):1190–7. https://doi.org/10.1167/iovs.09-4144.

    CrossRef  PubMed  Google Scholar 

  84. Klettner A. Physiological functions of VEGF in the retina and its possible implications of prolonged anti-VEGF therapy. Biology, regulation and clinical significance. Hauppauge: Nova Publishing; 2013.

    Google Scholar 

  85. Nishijima K, Ng YS, Zhong LC, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol. 2007;171(1):53–67. https://doi.org/10.2353/ajpath.2007.061237.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Saint-Geniez M, Maldonado AE, D’Amore PA. VEGF expression and receptor activation in the choroid during development and in the adult. Invest Ophthalmol Vis Sci. 2006;47(7):3135–42. https://doi.org/10.1167/iovs.05-1229.

    CrossRef  PubMed  Google Scholar 

  87. Ghiso N, Rohan RM, Amano S, Garland R, Adamis AP. Suppression of hypoxia-associated vascular endothelial growth factor gene expression by nitric oxide via cGMP. Invest Ophthalmol Vis Sci. 1999;40(6):1033–9.

    CAS  PubMed  Google Scholar 

  88. Ogata N, Yamanaka R, Yamamoto C, Miyashiro M, Kimoto T, Takahashi K, Maruyama K, Uyama M. Expression of vascular endothelial growth factor and its receptor, KDR, following retinal ischemia-reperfusion injury in the rat. Curr Eye Res. 1998;17(11):1087–96.

    CrossRef  CAS  PubMed  Google Scholar 

  89. Chu PG, Grunwald GB. Functional inhibition of retinal pigment epithelial cell-substrate adhesion with a monoclonal antibody against the beta 1 subunit of integrin. Invest Ophthalmol Vis Sci. 1991;32(6):1763–9.

    CAS  PubMed  Google Scholar 

  90. Mainster MA. Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems. Ophthalmology. 1986;93(7):952–8.

    CrossRef  CAS  PubMed  Google Scholar 

  91. Boulton ME. Studying melanin and lipofuscin in RPE cell culture models. Exp Eye Res. 2014;126:61–7. https://doi.org/10.1016/j.exer.2014.01.016.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Treumer F, Flohr C, Klettner A, Nolle B, Roider J. [Expression of matrix metalloproteinase-19 in the human cornea. Wound healing in the MMP-19 knock-out mouse model]. Der Ophthalmologe. 2010;107(7):647–53. https://doi.org/10.1007/s00347-009-2045-7.

  93. Akeo K, Tanaka Y, Uemura Y, Fujiwara T. Electron-microscopic comparative studies of phagocytic processes between outer segments and latex microspheres in cultured human retinal-pigment epithelial-cells. In Vitro Cell Dev Biol. 1988;24(5):445–50.

    CrossRef  CAS  PubMed  Google Scholar 

  94. Zhao MW, Jin ML, He S, Spee C, Ryan SJ, Hinton DR. A distinct integrin-mediated phagocytic pathway for extracellular matrix remodeling by RPE cells. Invest Ophthalmol Vis Sci. 1999;40(11):2713–23.

    CAS  PubMed  Google Scholar 

  95. Bialek S, Joseph DP, Miller SS. The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation. J Physiol. 1995;484(Pt 1):53–67.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  96. Joseph DP, Miller SS. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol. 1991;435:439–63.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  97. Quinn RH, Miller SS. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992;33(13):3513–27.

    CAS  PubMed  Google Scholar 

  98. Miura Y, Klettner A, Roider J. VEGF antagonists decrease barrier function of retinal pigment epithelium in vitro: possible participation of intracellular glutathione. Invest Ophthalmol Vis Sci. 2010;51(9):4848–55. https://doi.org/10.1167/iovs.09-4699.

    CrossRef  PubMed  Google Scholar 

  99. Ablonczy Z, Dahrouj M, Tang PH, Liu Y, Sambamurti K, Marmorstein AD, Crosson CE. Human retinal pigment epithelium cells as functional models for the RPE in vivo. Invest Ophthalmol Vis Sci. 2011;52(12):8614–20. https://doi.org/10.1167/iovs.11-8021.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  100. Klettner A, Recber M, Roider J. Comparison of the efficacy of aflibercept, ranibizumab, and bevacizumab in an RPE/choroid organ culture. Graefes Arch Clin Exp Ophthalmol. 2014;252(10):1593–8. https://doi.org/10.1007/s00417-014-2719-y.

    CAS  CrossRef  PubMed  Google Scholar 

  101. Alexander NS, Palczewska G, Palczewski K. Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas. Biomed Opt Express. 2015;6(8):3032–52. https://doi.org/10.1364/BOE.6.003032.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  102. Schweitzer D, Schenke S, Hammer M, Schweitzer F, Jentsch S, Birckner E, Becker W, Bergmann A. Towards metabolic mapping of the human retina. Microsc Res Tech. 2007;70(5):410–9. https://doi.org/10.1002/jemt.20427.

    CAS  CrossRef  PubMed  Google Scholar 

  103. Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, Ehalt T, Hammer JA, Miller SS. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci. 2006;47(8):3612–24. https://doi.org/10.1167/iovs.05-1622.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Miura, Y. (2020). Retinal Pigment Epithelium Organ Culture. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)