Skip to main content

RPE Autofluorescence

  • Chapter
  • First Online:
Retinal Pigment Epithelium in Health and Disease
  • 860 Accesses

Abstract

Fundus autofluorescence is essentially determined by the fluorophores of the retinal pigment epithelium. The retinal pigment epithelium plays a crucial role in many retinal diseases. Metabolic processes of the RPE lead in a unique way to changes in autofluorescence, especially triggered by lipofuscin and melanolipofuscin. The examination of autofluorescence therefore extends the understanding of pathophysiology of diseases and disease progression. As a result of considerable technical advances, even single intracellular granules can be analysed in detail today. These techniques will become relevant for clinical examinations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36(3):718–29.

    CAS  PubMed  Google Scholar 

  2. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF. Fundus autofluorescence imaging: review and perspectives. Retina (Philadelphia, PA). 2008;28(3):385–409.

    Article  Google Scholar 

  3. Feeney-Burns L, Hilderbrand ES, Eldridge S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci. 1984;25(2):195–200.

    CAS  PubMed  Google Scholar 

  4. Weiter JJ, Delori FC, Wing GL, Fitch KA. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci. 1986;27(2):145–52.

    CAS  PubMed  Google Scholar 

  5. Eldred GE, Miller GV, Stark WS, Feeney-Burns L. Lipofuscin: resolution of discrepant fluorescence data. Science (New York, NY). 1982;216(4547):757–9.

    Article  CAS  Google Scholar 

  6. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30(8):1691–9.

    CAS  PubMed  Google Scholar 

  7. Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 1999;237(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Kim SR, Westlund BS, Sparrow JR. Complement activation by bisretinoid constituents of RPE lipofuscin. Invest Ophthalmol Vis Sci. 2009;50:1392–9.

    Article  PubMed  Google Scholar 

  9. Ng KP, Gugiu B, Renganathan K, Davies MW, Gu X, Crabb JS, Kim SR, Rozanowska MB, Bonilha VL, Rayborn ME, Salomon RG, Sparrow JR, Boulton ME, Hollyfield JG, Crabb JW. Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics. 2008;7(7):1397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feeney L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci. 1978;17(7):583–600.

    CAS  PubMed  Google Scholar 

  11. Eldred GM, Miller GV, Stark WS, Feeney-Burns L. Lipofuscin: resolution of discrepant fluorescence data. Science. 1982;216:3.

    Article  Google Scholar 

  12. Krebs I, Noemi L, Forrester JV. Fundus autofluorescence. Graefes Arch Clin Exp Ophthalmol. 2011;249(2):309.

    Article  Google Scholar 

  13. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow J. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci U S A. 1998;95(25):14609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feeney-Burns L, Berman ER, Rothman H. Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol. 1980;90(6):783–91.

    Article  CAS  PubMed  Google Scholar 

  15. Brunk UT, Wihlmark U, Wrigstad A, Roberg K, Nilsson SE. Accumulation of lipofuscin within retinal pigment epithelial cells results in enhanced sensitivity to photo-oxidation. Gerontology. 1995;41(Suppl 2):201–12.

    Article  CAS  PubMed  Google Scholar 

  16. Sparrow JR, Zhou J, Ben-Shabat S, Vollmer H, Itagaki Y, Nakanishi K. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci. 2002;43(4):1222–7.

    PubMed  Google Scholar 

  17. Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME. Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 2000;41(8):2303–8.

    CAS  PubMed  Google Scholar 

  18. Bermann M, Schutt F, Holz FG, Kopitz J. Does A2E, a retinoid component of lipofuscin and inhibitor of lysosomal degradative functions, directly affect the activity of lysosomal hydrolases? Exp Eye Res. 2001;72(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  19. Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, Cantz M. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 1999;40(3):737–43.

    CAS  PubMed  Google Scholar 

  20. Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D. Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol B. 1993;19(3):201–4.

    Article  CAS  PubMed  Google Scholar 

  21. Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem. 1995;270(32):18825–30.

    Article  CAS  PubMed  Google Scholar 

  22. Warburton S, Davis WE, Southwick K, et al. Proteomic and phototoxic characterization of melanolipofuscin: correlation to disease and model for its origin. Mol Vis. 2007;13:318–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sasamoto Y, Gomi F, Sawa M, Sakaguchi H, Tsujikawa M, Nishida K. Effect of cataract in evaluation of macular pigment optical density by autofluorescence spectrometry. Invest Ophthalmol Vis Sci. 2011;52(2):927–32.

    Article  PubMed  Google Scholar 

  24. Sharifzadeh M, Obana A, Gohto Y, Seto T, Gellermann W. Autofluorescence imaging of macular pigment: influence and correction of ocular media opacities. J Biomed Opt. 2014;19(9):96010.

    Article  PubMed  CAS  Google Scholar 

  25. Sharifzadeh M, Bernstein PS, Gellermann W. Nonmydriatic fluorescence-based quantitative imaging of human macular pigment distributions. J Opt Soc Am A Opt Image Sci Vis. 2006;23(10):2373–87.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van de Kraats J, van Norren D. Optical density of the aging human ocular media in the visible and the UV. J Opt Soc Am A Opt Image Sci Vis. 2007;24(7):1842–57.

    Article  PubMed  Google Scholar 

  27. Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt. 1987;26(8):1492–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sharp PF, Manivannan A, Xu H, Forrester JV. The scanning laser ophthalmoscope—a review of its role in bioscience and medicine. Phys Med Biol. 2004;49(7):1085–96.

    Article  CAS  PubMed  Google Scholar 

  29. Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease. Int J Retina Vitreous. 2016;2:12.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park SP, Siringo FS, Pensec N, Hong IH, Sparrow J, Barile G, Tsang SH, Chang S. Comparison of fundus autofluorescence between fundus camera and confocal scanning laser ophthalmoscope-based systems. Ophthalmic Surg Lasers Imaging Retina. 2013;44(6):536–43.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weinberger AWA, Lappas A, Kirschkamp T, Mazinani BAE, Huth JK, Mohammadi B, Walter P. Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Invest Ophthalmol Vis Sci. 2006;47(7):3098–108.

    Article  PubMed  Google Scholar 

  32. Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47(8):3556–64.

    Article  PubMed  Google Scholar 

  33. Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci. 2001;42(8):1855–66.

    CAS  PubMed  Google Scholar 

  34. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497–523.

    Article  CAS  PubMed  Google Scholar 

  35. Holz FG, Bellman C, Staudt S, et al. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2001;42:1051–6.

    CAS  PubMed  Google Scholar 

  36. Bindewald A, Schmitz-Valkenberg S, Jorzik JJ, Dolar-Szczasny J, Sieber H, Keilhauer C, Weinberger AW, Dithmar S, Pauleikhoff D, Mansmann U, Wolf S, Holz FG. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br J Ophthalmol. 2005;89:874–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abbe E. Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat. 1873;9:413–20.

    Article  Google Scholar 

  38. Heintzmann R, Ficz G. Breaking the resolution limit in light microscopy. Brief Funct Genomic Proteomic. 2006;5(4):289–301.

    Article  PubMed  Google Scholar 

  39. Bindewald-Wittich A, Han M, Schmitz-Valckenberg S, Snyder SR, Giese GN, Bille JF, Holz FG. Two-photon–excited fluorescence imaging of human RPE cells with a femtosecond Ti:sapphire laser. Invest Ophthalmol Vis Sci. 2006;47(10):4553–7.

    Article  PubMed  Google Scholar 

  40. Han M, Bindewald-Wittich A, Holz FG, Giese G, Niemz MH, Snyder S, Sun H, Yu J, Agopov M, La Schiazza O, Bille JF. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells. J Biomed Opt. 2006;11(1):010501.

    Article  PubMed  Google Scholar 

  41. Cremer C, Cremer T. Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc Acta. 1978;81:31–44.

    CAS  PubMed  Google Scholar 

  42. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–2.

    Article  CAS  PubMed  Google Scholar 

  43. Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 2000;198(2):82–7.

    Article  CAS  PubMed  Google Scholar 

  44. Cremer C, von Ketteler A, Lemmer P, Kaufmann R, Weiland Y, Mueller P, Hausmann M, Baddeley D, Amberger R. Far-field fluorescence microscopy of cellular structures at molecular optical resolution. In: Diaspro A, editor. Nanoscopy and multidimensional optical fluorescence microscopy. Boca Raton: Taylor & Francis; 2010.

    Google Scholar 

  45. Best G, Amberger R, Baddeley D, Ach T, Dithmar S, Heintzmann R, Cremer C. Structured illumination microscopy of autofluorescent aggregations in human tissue. Micron (Oxford, England: 1993). 2011;42(4):330–5.

    Article  CAS  Google Scholar 

  46. Ach T, Best G, Ruppenstein M, Amberger R, Cremer C, Dithmar S. High-resolution fluorescence microscopy of retinal pigment epithelium using structured illumination. Ophthalmologe. 2010;107:1037–42.

    Article  CAS  PubMed  Google Scholar 

  47. Ach T, Best G, Rossberger S, Heintzmann R, Cremer C, Dithmar S. Autofluorescence imaging of human RPE cell granules using structured illumination microscopy. Br J Ophthalmol. 2012;96(8):1141–4.

    Article  PubMed  Google Scholar 

  48. Rossberger S, Ach T, Best G, Cremer C, Heintzmann R, Dithmar S. High-resolution imaging of autofluorescent particles within drusen using structured illumination microscopy. Br J Ophthalmol. 2013;97(4):518–23.

    Article  PubMed  Google Scholar 

  49. Peters S, Kayatz P, Kociok N, et al. Cellular transport of subretinal material into choroidal and scleral blood vessels: an electron microscopic study. Graefes Arch Clin Exp Ophthalmol. 1999;237:976–83.

    Article  CAS  PubMed  Google Scholar 

  50. Boulton M, Docchio F, Dayhaw-Barker P, et al. Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vis Res. 1990;30:1291–303.

    Article  CAS  PubMed  Google Scholar 

  51. Schutt F, Ueberle B, Schnolzer M, et al. Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBS Lett. 2002;528:217–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dithmar, S., Celik, N. (2020). RPE Autofluorescence. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics