Skip to main content

RPE in SD-OCT

  • Chapter
  • First Online:
Retinal Pigment Epithelium in Health and Disease

Abstract

The most precise diagnostic tool of RPE has been OCT (optical coherence tomography) for some 19 years. This chapter gives an overview of the OCT technique and its possibilities, technical development and limits. A systematic overview of SD-OCT in healthy and diseased RPE is given. Finally, a summary and outlook on future developments in the field of high-resolution imaging technology is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18:1864–6.

    Article  CAS  PubMed  Google Scholar 

  3. Ash C, Town G, Clement M. Confirmation of spectral jitter: a measured shift in the spectral distribution of intense pulsed light systems using a time-resolved spectrometer during exposure and increased fluence. J Med Eng Technol. 2010;34:97–107.

    Article  CAS  PubMed  Google Scholar 

  4. N’soukpoé-Kossi CN, Leblanc RM. Absorption and photoacoustic spectroscopies of lutein and zeaxanthin Langmuir–Blodgett films in connection with the Haidinger’s brushes. Can J Chem. 1988;66:1459–66.

    Article  Google Scholar 

  5. Prahl S. Optical absorption of indocyanine green (ICG). 2018. https://omlc.org/spectra/icg/

  6. Coscas GJ, Lupidi M, Coscas F, Cagini C, Souied EH. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge. Retina. 2015;35:2219–28.

    Article  PubMed  Google Scholar 

  7. Lee JM, Park SC. The argument for swept-source OCT. Ophthalmol Manag. 2016;20:20–2.

    Google Scholar 

  8. Karampelas M, Sim DA, Keane PA. Spectral-domain OCT of the RPE. Retin Physician. 2014;11:53–9.

    Google Scholar 

  9. Runkle AP, Kaiser PK, Srivastava SK, Schachat AP, Reese JL, Ehlers JP. OCT angiography and ellipsoid zone mapping of macular telangiectasia type 2 from the AVATAR study. Invest Opthalmol Vis Sci. 2017;58:3683.

    Article  CAS  Google Scholar 

  10. Fleckenstein M, Issa PC, Helb H-M, Schmitz-Valckenberg S, Finger RP, Scholl HPN, et al. High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest Opthalmol Vis Sci. 2008;49:4137.

    Article  Google Scholar 

  11. Keane PA, Patel PJ, Liakopoulos S, Heussen FM, Sadda SR, Tufail A. Evaluation of age-related macular degeneration with optical coherence tomography. Surv Ophthalmol. 2012;57:389–414.

    Article  PubMed  Google Scholar 

  12. Schmitz-Valckenberg S, Steinberg JS, Fleckenstein M, Visvalingam S, Brinkmann CK, Holz FG. Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration. Ophthalmology. 2010;117:1169–76.

    Article  PubMed  Google Scholar 

  13. Moore DJ, Clover GM. The effect of age on the macromolecular permeability of human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2001;42:2970–5.

    CAS  PubMed  Google Scholar 

  14. Balaratnasingam C, Messinger JD, Sloan KR, Yannuzzi LA, Freund KB, Curcio CA. Histologic and optical coherence tomographic correlates in drusenoid pigment epithelium detachment in age-related macular degeneration. Ophthalmology. 2017;124:644–56.

    Article  PubMed  Google Scholar 

  15. Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB. Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017;58:BIO211–26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Salvo G, Vaz-Pereira S, Keane PA, Tufail A, Liew G. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol. 2014;158:1228–1238.e1.

    Article  PubMed  Google Scholar 

  17. Feucht N, Maier M, Lohmann CP, Reznicek L. OCT angiography findings in acute central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina. 2016;47:322–7.

    Article  PubMed  Google Scholar 

  18. Ferris FL, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120:844–51.

    Article  PubMed  Google Scholar 

  19. Gattoussi S, Buitendijk GHS, Peto T, Leung I, Schmitz-Valckenberg S, Oishi A, et al. The European Eye Epidemiology spectral-domain optical coherence tomography classification of macular diseases for epidemiological studies. Acta Ophthalmol. 2019;97:364–71.

    Article  PubMed  Google Scholar 

  20. Keane PA, Karampelas M, Sim DA, Sadda SR, Tufail A, Sen HN, et al. Objective measurement of vitreous inflammation using optical coherence tomography. Ophthalmology. 2014;121:1706–14.

    Article  PubMed  Google Scholar 

  21. Querques G, Georges A, Ben Moussa N, Sterkers M, Souied EH. Appearance of regressing drusen on optical coherence tomography in age-related macular degeneration. Ophthalmology. 2014;121:173–9.

    Article  PubMed  Google Scholar 

  22. Klein R, Klein BEK, Tomany SC, Meuer SM, Huang G-H. Ten-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology. 2002;109:1767–79.

    Article  PubMed  Google Scholar 

  23. Sohrab MA, Smith RT, Salehi-Had H, Sadda SR, Fawzi AA. Image registration and multimodal imaging of reticular pseudodrusen. Invest Opthalmol Vis Sci. 2011;52:5743.

    Article  Google Scholar 

  24. Regatieri CV, Branchini L, Duker JS. The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2011;42:S56–66.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roberts PK, Baumann B, Schlanitz FG, Sacu S, Bolz M, Pircher M, et al. Retinal pigment epithelial features indicative of neovascular progression in age-related macular degeneration. Br J Ophthalmol. 2017;101:1361–6.

    Article  PubMed  Google Scholar 

  26. Farecki M-L, Gutfleisch M, Faatz H, Rothaus K, Heimes B, Spital G, et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-angiography. Graefes Arch Clin Exp Ophthalmol. 2017;255:913–21.

    Article  PubMed  Google Scholar 

  27. Corvi F, Cozzi M, Barbolini E, Nizza D, Belotti M, Staurenghi G, et al. Comparison between several optical coherence tomography angiography devices and indocyanine green angiography of choroidal neovascularization. Retina. 2019.

    Google Scholar 

  28. Told R, Sacu S, Hecht A, Baratsits M, Eibenberger K, Kroh ME, et al. Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration. Invest Opthalmol Vis Sci. 2018;59:2393.

    Article  Google Scholar 

  29. Akkaya S. Spectrum of pachychoroid diseases. Int Ophthalmol. 2018;38:2239–46.

    Article  PubMed  Google Scholar 

  30. Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina Phila Pa. 2001;21:416–34.

    Article  CAS  Google Scholar 

  31. Öztaş Z, Menteş J. Retinal angiomatous proliferation: multimodal imaging characteristics and follow-up with eye-tracked spectral domain optical coherence tomography of precursor lesions. Türk Oftalmol Derg. 2018;48:66–9.

    Article  Google Scholar 

  32. Benhamou N, Souied EH, Zolf R, Coscas F, Coscas G, Soubrane G. Adult-onset foveomacular vitelliform dystrophy: a study by optical coherence tomography. Am J Ophthalmol. 2003;135:362–7.

    Article  PubMed  Google Scholar 

  33. Gass JD, Jallow S, Davis B. Adult vitelliform macular detachment occurring in patients with basal laminar drusen. Am J Ophthalmol. 1985;99:445–59.

    Article  CAS  PubMed  Google Scholar 

  34. Qian CX, Charran D, Strong CR, Steffens TJ, Jayasundera T, Heckenlively JR. Optical coherence tomography examination of the retinal pigment epithelium in best vitelliform macular dystrophy. Ophthalmology. 2017;124:456–63.

    Article  PubMed  Google Scholar 

  35. O’Gorman S, Flaherty WA, Fishman GA, Berson EL. Histopathologic findings in Best’s vitelliform macular dystrophy. Arch Ophthalmol. 1988;106:1261–8.

    Article  PubMed  Google Scholar 

  36. Battaglia Parodi M, Iacono P, Romano F, Bolognesi G, Fasce F, Bandello F. Optical coherence tomography in best vitelliform macular dystrophy. Eur J Ophthalmol. 2017;27:201–4.

    Article  PubMed  Google Scholar 

  37. Schmidt-Erfurth U, Klimscha S, Waldstein SM, Bogunović H. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye. 2017;31:26–44.

    Article  CAS  PubMed  Google Scholar 

  38. Qu J, Velaga SB, Hariri AH, Nittala MG, Sadda S. Classification and quantitative analysis of geographic atrophy junctional zone using spectral domain optical coherence tomography. Retina. 2018;38:1456–63.

    Article  PubMed  Google Scholar 

  39. Qin J, Rinella N, Zhang Q, Zhou H, Wong J, Deiner M, et al. OCT angiography and cone photoreceptor imaging in geographic atrophy. Invest Opthalmol Vis Sci. 2018;59:5985–92.

    Article  Google Scholar 

  40. Nassisi M, Baghdasaryan E, Borrelli E, Ip M, Sadda SR. Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. PLoS One. 2019;14:e0212563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zweifel SA. Outer retinal tubulation: a novel optical coherence tomography finding. Arch Ophthalmol. 2009;127:1596.

    Article  PubMed  Google Scholar 

  42. Cai CX, Light JG, Handa JT. Quantifying the rate of ellipsoid zone loss in Stargardt disease. Am J Ophthalmol. 2018;186:1–9.

    Article  PubMed  Google Scholar 

  43. Müller PL, Pfau M, Möller PT, Nadal J, Schmid M, Lindner M, et al. Choroidal flow signal in late-onset Stargardt disease and age-related macular degeneration: an OCT-angiography study. Invest Opthalmol Vis Sci. 2018;59:AMD122.

    Article  Google Scholar 

  44. Hariri AH, Velaga SB, Girach A, Ip MS, Le PV, Lam BL, et al. Measurement and reproducibility of preserved ellipsoid zone area and preserved retinal pigment epithelium area in eyes with choroideremia. Am J Ophthalmol. 2017;179:110–7.

    Article  PubMed  Google Scholar 

  45. Murro V, Mucciolo DP, Giorgio D, Sodi A, Passerini I, Virgili G, et al. Optical coherence tomography angiography (OCT-A) in young choroideremia (CHM) patients. Ophthalmic Genet. 2019;40(3):201–6.

    Article  PubMed  Google Scholar 

  46. Fujinami K, Yokoi T, Hiraoka M, Nishina S, Azuma N. Choroidal neovascularization in a child following laser pointer-induced macular injury. Jpn J Ophthalmol. 2010;54:631–3.

    Article  PubMed  Google Scholar 

  47. Wyrsch S, Baenninger PB, Schmid MK. Retinal injuries from a handheld laser pointer. N Engl J Med. 2010;363:1089–91.

    Article  CAS  PubMed  Google Scholar 

  48. Harkness Eye Institute, Columbia University, New York, United States, Kapoor R, Whigham BT, Al-Aswad LA. Artificial intelligence and optical coherence tomography imaging. Asia-Pac J Ophthalmol [Internet] 2019 [cited 2019 Jun 11]. http://www.apjo.org/Apjo/pdf/id/654.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hassenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassenstein, A., Grohmann, C. (2020). RPE in SD-OCT. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics