Advertisement

Context-Based News Headlines Analysis Using Machine Learning Approach

  • Shadikur Rahman
  • Syeda Sumbul HossainEmail author
  • Saiful Islam
  • Mazharul Islam Chowdhury
  • Fatama Binta Rafiq
  • Khalid Been Md. Badruzzaman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11684)

Abstract

An increasing number of people are changing their way of thinking by reading news headlines. The interactivity and sincerity present in online news headlines are becoming influential to society. Apart from that, news websites build efficient policies to catch people’s awareness and attract their clicks. In that case, it is a must to identify the sentiment polarity of the news headlines for avoiding misconception. In this paper, we analyze 3383 news headlines generated by five major global newspapers during a minimum of four consecutive months. In order to identify the sentiment polarity (or sentiment orientation) of news headlines, we use 7 machine learning algorithms and compare those results to find the better ones. Among those Bernoulli Naïve Bayes technique achieves higher accuracy than others. This study will help the public to make any decision based on news headlines by avoiding misconception against any leader or governance and will help to identify the most neutral newspaper or news blogs.

Keywords

Sentiment analysis Machine learning Semantic orientation News headline Text mining 

References

  1. Ecker, U.K., Lewandowsky, S., Chang, E.P., Pillai, R.: The effects of subtle misinformation in news headlines. J. Exp. Psychol. Appl. 20(4), 323 (2014) CrossRefGoogle Scholar
  2. Nardo, M., Petracco-Giudici, M., Naltsidis, M.: Walking down wall street with a tablet: a survey of stock market predictions using the web. J. Econ. Surv. 30(2), 356–369 (2016)CrossRefGoogle Scholar
  3. Alanyali, M., Moat, H.S., Preis, T.: Quantifying the relationship between financial news and the stock market. Sci. Rep. 3, 3578 (2013)CrossRefGoogle Scholar
  4. Feuerriegel, S., Heitzmann, S.F., Neumann, D.: Do investors read too much into news? How news sentiment causes price formation. In: 2015 48th Hawaii International Conference on System Sciences, pp. 4803–4812. IEEE (2015)Google Scholar
  5. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)Google Scholar
  6. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 616–623 (2003)Google Scholar
  7. McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes text classification. In AAAI-98 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)Google Scholar
  8. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 1, 66–75 (1994)Google Scholar
  9. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT 2010. Physica-Verlag HD (2010)Google Scholar
  10. Gunn, S.R., et al.: Support vector machines for classification and regression. ISIS technical report, vol. 14, no. 1, pp. 5–16 (1998)Google Scholar
  11. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)CrossRefGoogle Scholar
  12. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)CrossRefGoogle Scholar
  13. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  14. Chiong, R., Fan, Z., Hu, Z., Adam, M.T., Lutz, B., Neumann, D.: A sentiment analysis-based machine learning approach for financial market prediction via news disclosures. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 278–279. ACM (2018)Google Scholar
  15. El-Din Mohamed Hussein, D.M.: A survey on sentiment analysis challenges. J. King Saud. Univ. Eng. Sci. 30(4), 330–338 (2018)Google Scholar
  16. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  17. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th International Conference on World Wide Web, pp. 342–351. ACM (2005)Google Scholar
  18. Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 International Conference on Web Search and Data mining, pp. 231–240. ACM (2008)Google Scholar
  19. Im, T.L., San, P.W., On, C.K., Alfred, R., Anthony, P.: Analysing market sentiment in financial news using lexical approach. In: 2013 IEEE Conference on Open Systems, ICOS, pp. 145–149. IEEE (2013)Google Scholar
  20. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. In: ICWSM 2007, vol. 21, pp. 219–222 (2007)Google Scholar
  21. Maynard, D., Bontcheva, K., Rout, D.: Challenges in developing opinion mining tools for social media. In: Proceedings of the@ NLP can u tag# usergeneratedcontent, pp. 15–22 (2012)Google Scholar
  22. Lerman, K., Gilder, A., Dredze, M., Pereira, F.: Reading the markets: forecasting public opinion of political candidates by news analysis. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1, pp. 473–480. Association for Computational Linguistics (2008)Google Scholar
  23. Kim, S., Hovy, E.: Crystal: analyzing predictive opinions on the web. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) (2007)Google Scholar
  24. Shuhidan, S.M., Hamidi, S.R., Kazemian, S., Shuhidan, S.M., Ismail, M.A.: Sentiment analysis for financial news headlines using machine learning algorithm. Proceedings of the 7th International Conference on Kansei Engineering and Emotion Research 2018. AISC, vol. 739, pp. 64–72. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-8612-0_8CrossRefGoogle Scholar
  25. Severyn, A., Moschitti, A.: Twitter sentiment analysis with deep convolutional neural networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 959–962. ACM (2015)Google Scholar
  26. Araque, O., Corcuera-Platas, I., Sanchez-Rada, J.F., Iglesias, C.A.: Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst. Appl. 77, 236–246 (2017)CrossRefGoogle Scholar
  27. Tang, D., Qin, B., Liu, T.: Deep learning for sentiment analysis: successful approaches and future challenges. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 5(6), 292–303 (2015)CrossRefGoogle Scholar
  28. Taylor, A., Marcus, M., Santorini, B.: The Penn Treebank: an overview. In: Abeillé, A. (ed.) Treebanks. TLTB, vol. 20, pp. 5–22. Springer, Dordrecht (2003).  https://doi.org/10.1007/978-94-010-0201-1_1 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shadikur Rahman
    • 1
  • Syeda Sumbul Hossain
    • 1
    Email author
  • Saiful Islam
    • 1
  • Mazharul Islam Chowdhury
    • 1
  • Fatama Binta Rafiq
    • 1
  • Khalid Been Md. Badruzzaman
    • 1
  1. 1.Daffodil International UniversityDhakaBangladesh

Personalised recommendations