Skip to main content

Deep Learning Models for Time Series Forecasting of Indoor Temperature and Energy Consumption in a Cold Room

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11684))

Included in the following conference series:

  • 1870 Accesses

Abstract

We propose to study the dynamic behavior of indoor temperature and energy consumption in a cold room during demand response periods. Demand response is a method that consists in smoothing demand over time, seeking to reduce or even stop consumption during periods of high demand in order to shift it to periods of lower demand. Such a system can therefore be tackled as the study of a time-series, where each behavioral parameter is a time-varying parameter. Four deep neural network architectures derived from the LSTM architecture were studied, adapted and compared. Their validation was carried out using experimental data collected in a cold room in order to assess their performance in predicting demand response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, J.A., et al.: Specific energy consumption values for various refrigerated food cold stores. Energy Build. 74, 141–151 (2014)

    Article  Google Scholar 

  2. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  4. Rojo-Alvarez, J.L., Martınez-Ramon, M., de Prado-Cumplido, M., et al.: Support vector method for robust ARMA system identification. IEEE Trans. Sign. Process. 52(1), 155–164 (2004)

    Article  MathSciNet  Google Scholar 

  5. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  6. Afroz, Z., Shafiullah, G.M., Urmee, T., Higgins, G.: Prediction of indoor temperature in an institutional building. Energy Procedia 142, 1860–1866 (2017)

    Article  Google Scholar 

  7. Deb, C., Zhang, F., Yang, J., Lee, S.E., Shah, K.W.: A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 74, 902–924 (2017)

    Article  Google Scholar 

  8. Lee, W.L., Tan, K.W., Lim, Z.Y.: A data-driven approach for benchmarking energy efficiency of warehouse buildings, School of Information Systems at Institutional Knowledge at Singapore Management University (2017)

    Google Scholar 

  9. Frausto, H.U., Pieters, J.G., Deltour, J.M.: Modelling greenhouse temperature by means of auto regressive models. Biosyst. Eng. 84, 147–157 (2003)

    Article  Google Scholar 

  10. Afram, A., Janabi-Sharifi, F.: Review of modeling methods for HVAC systems. Appl. Therm. Eng. 67, 507–519 (2014)

    Article  Google Scholar 

  11. Berthou, T., Stabat, P., Salvazet, R., Marchio, D.: Comparaison de modèles linéaires inverses pour la mise en place de stratégies d’effacement, p. 6. Rencontres AUGC-IBPSA, Chambéry, Savoie (2012)

    Google Scholar 

  12. Ohtsu, K., Peng, H., Kitagawa, G.: Time series analysis through AR modeling. Time Series Modeling for Analysis and Control. SS, pp. 7–56. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-55303-8_2

    Chapter  Google Scholar 

  13. Amjady, N.: Short-term hourly load forecasting using time series modeling with peak load estimation capability. IEEE Trans. Power Syst. 16, 498–505 (2001)

    Article  Google Scholar 

  14. Ziekow, H., Goebel, C., Struker, J., Jacobsen, H.A.: The potential of smart home sensors in forecasting household electricity demand (2013)

    Google Scholar 

  15. Amasyali, K., El-Gohary, N.: Building lighting energy consumption prediction for supporting energy data analytics. Procedia Eng. 145, 511–517 (2016)

    Article  Google Scholar 

  16. Chou, J.S., Tran, D.S.: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy 165, 709–726 (2018)

    Article  Google Scholar 

  17. Nataraja, C., Gorawar, M.B., Shilpa, G.N., Harsha, J.S.: Short term load forecasting using time series analysis: a case study for Karnataka, India. Int. J. Eng. Sci. Innov. Technol. 1, 45–53 (2012)

    Google Scholar 

  18. Rios-Moreno, G.J., Trejo-Perea, M., Castañeda-Miranda, R., Hernández-Guzmán, V.M., Herrera-Ruiz, G.: Modelling temperature in intelligent buildings by means of autoregressive models. Autom. Constr. 16, 713–722 (2007)

    Article  Google Scholar 

  19. Kuo, P.-H., Huang, C.-J.: A high precision artificial neural networks modelfor short-term energy load forecasting. Energies 11, 213 (2018)

    Article  Google Scholar 

  20. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting (LSTM Convolutif) (2015)

    Google Scholar 

  21. Aman, S., Frincu, M., Chelmis, C., Noor, M., Simmhan, Y., Prasanna, V.K.: Prediction models for dynamic demand response. In: IEEE International Conference on Smart Grid Communications (SmartGridComm) (2015)

    Google Scholar 

  22. Hu, M., Xiao, F., Wang, L.: Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model. Appl. Energy 207, 324–335 (2017)

    Article  Google Scholar 

  23. Xue, X., Wang, S., Yan, C., Cui, B.: A fast chiller power demand response control strategy for buildings connected to smart grid. Appl. Energy 137, 77–87 (2014)

    Article  Google Scholar 

  24. Marino, D.L., Amarasinghe, K., Salvazet, R., Manic, M.: Building energy load forecasting using deep neural networks. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nédra Mellouli or Minh Hoang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mellouli, N., Akerma, M., Hoang, M., Leducq, D., Delahaye, A. (2019). Deep Learning Models for Time Series Forecasting of Indoor Temperature and Energy Consumption in a Cold Room. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11684. Springer, Cham. https://doi.org/10.1007/978-3-030-28374-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28374-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28373-5

  • Online ISBN: 978-3-030-28374-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics