Skip to main content

Principles of Nuclear Magnetic Resonance and Selected Biological Applications

  • Chapter
  • First Online:
Radiation in Bioanalysis

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 8))

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is extremely powerful to study distinct biological systems ranging from biomolecules to specific metabolites. This chapter presents the basic concepts of the technique and illustrates its potential to study such systems. Similarly, to other spectroscopic techniques, the theoretical background of NMR is sustained by detailed mathematics and physical chemistry concepts, which were kept to the minimum. The intent is to introduce the fundamentals of the technique to science students from different backgrounds. The basic concepts of NMR spectroscopy are briefly presented in the first section, and the following sections describe applications in the biosciences field, using electron transfer proteins as model, particularly cytochromes. The heme groups endow cytochromes with particular features making them excellent examples to illustrate the high versatility of NMR spectroscopy. The main methodologies underlying protein solution structure determination are discussed in the second section. This is followed by a description of the main experiments explored to structurally map protein-protein or protein-ligand interface regions in molecular complexes. Finally, it is shown how NMR spectroscopy can assist in the functional characterization of multiheme cytochromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ayala I, Sounier R, Use N et al (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119

    Article  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365

    Article  Google Scholar 

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1:99–104

    Article  Google Scholar 

  • Bax A, Clore GM, Gronenborn AM (1990) 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson 88:425–431

    ADS  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2001) Solution NMR of paramagnetic molecules: applications to metallobiomolecules and models. Current methods in inorganic chemistry, 1st edn. Springer, Netherlands

    Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N-13C-labelled proteins. J Magn Reson 97:213–217

    ADS  Google Scholar 

  • Crowley PB, Ubbink M (2003) Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. Acc Chem Res 36:723–730

    Article  Google Scholar 

  • Dalvit C (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14:1051–1057

    Article  Google Scholar 

  • Dantas JM, Tomaz DM, Morgado L et al (2013) Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Lett 587:2662–2668

    Article  Google Scholar 

  • Dantas JM, Morgado L, Catarino T et al (2014) Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances. Biochim Biophys Acta 1837:750–760

    Article  Google Scholar 

  • Dantas JM, Morgado L, Aklujkar M et al (2015) Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies. Front Microbiol 6:752

    Article  Google Scholar 

  • Dantas JM, Brausemann A, Einsle O et al (2017a) NMR studies of the interaction between inner membrane-associated and periplasmic cytochromes from Geobacter sulfurreducens. FEBS Lett 591:1657–1666

    Article  Google Scholar 

  • Dantas JM, Silva MA, Pantoja-Uceda D et al (2017b) Solution structure and dynamics of the outer membrane cytochrome OmcF from Geobacter sulfurreducens. Biochim Biophys Acta 1858:733–741

    Article  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. http://www.pymol.org

  • Dutta A, Saxena K, Schwalbe H et al (2012) Isotope labeling in mammalian cells. Methods Mol Biol 831:55–69

    Article  Google Scholar 

  • Fernandes TM, Morgado L, Salgueiro CA (2018) Thermodynamic and functional characterization of the periplasmic triheme cytochrome PpcA from Geobacter metallireducens. Biochem J 475:2861–2875

    Article  Google Scholar 

  • Fischer M, Kloiber K, Hausler J et al (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. ChemBioChem 8:610–612

    Article  Google Scholar 

  • Franke B, Opitz C, Isogai S et al (2018) Production of isotope-labeled proteins in insect cells for NMR. J Biomol NMR 71:173–184

    Article  Google Scholar 

  • Freiburger L, Sonntag M, Hennig J et al (2015) Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J Biomol NMR 63:1–8

    Article  Google Scholar 

  • Frueh DP (2014) Practical aspects of NMR signal assignment in larger and challenging proteins. Prog Nucl Magn Reson Spectrosc 78:47–75

    Article  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA et al (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • Grzesiek S, Bax A (1992a) Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293

    Article  Google Scholar 

  • Grzesiek S, Bax A (1992b) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99:201–207

    ADS  Google Scholar 

  • Grzesiek S, Bax A (1992c) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson 96:432–440

    ADS  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nuclic Acids Res 43:W370–377

    Article  Google Scholar 

  • Hammes GG (2005) Spectroscopy for the biological sciences. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  • Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  Google Scholar 

  • Ippel JH, Olofsson A, Schleucher J et al (2002) Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy. Proc Natl Acad Sci USA 99:8648–8653

    Article  ADS  Google Scholar 

  • Jeener J, Meier BH, Bachmann P et al (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553

    Article  ADS  Google Scholar 

  • Kainosho M, Guntert P (2009) SAIL–stereo-array isotope labeling. Q Rev Biophys 42:247–300

    Article  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y et al (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  ADS  Google Scholar 

  • Kay LE, Ikura M, Tschudin R et al (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    ADS  Google Scholar 

  • Keller RM, Wuthrich K (1978) Assignment of the heme c resonances in the 360 MHz 1H NMR spectra of cytochrome c. Biochim Biophys Acta 533:195–208

    Article  Google Scholar 

  • Klopp J, Winterhalter A, Gebleux R et al (2018) Cost-effective large-scale expression of proteins for NMR studies. J Biomol NMR 71:247–262

    Article  Google Scholar 

  • Krishnarjuna B, Jaipuria G, Thakur A et al (2011) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49:39–51

    Article  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • La D, Kong M, Hoffman W et al (2013) Predicting permanent and transient protein-protein interfaces. Proteins: Structure. Funct Bioinform 81:805–818

    Article  Google Scholar 

  • Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3676

    Article  Google Scholar 

  • Lin MT, Sperling LJ, Schmidt HLF et al (2011) A rapid and robust method for selective isotope labeling of proteins. Methods 55:370–378

    Article  Google Scholar 

  • Liu Z, Gong Z, Dong X et al (2016) Transient protein-protein interactions visualized by solution NMR. Biochim Biophys Acta 1864:115–122

    Article  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL et al (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  ADS  Google Scholar 

  • Lovley DR, Fraga JL, Coates JD et al (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98

    Article  Google Scholar 

  • Mao H, Hart SA, Schink A et al (2004) Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc 126:2670–2671

    Article  Google Scholar 

  • Marion D, Driscoll PC, Kay LE et al (1989) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28:6150–6156

    Article  Google Scholar 

  • McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 23:1–38

    Article  Google Scholar 

  • Morgado L, Fernandes AP, Londer YY et al (2010) One simple step in the identification of the cofactors signals, one giant leap for the solution structure determination of multiheme proteins. Biochem Biophys Res Commun 393:466–470

    Article  Google Scholar 

  • Morgado L, Paixão VB, Schiffer M et al (2012) Revealing the structural origin of the redox-Bohr effect: the first solution structure of a cytochrome from Geobacter sulfurreducens. Biochem J 441:179–187

    Article  Google Scholar 

  • Moss GP (1988) Nomenclature of tetrapyrroles. Recommendations 1986 IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Eur J Biochem 178:277–328

    Article  Google Scholar 

  • Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci 95:6705–6710

    Article  ADS  Google Scholar 

  • Mund M, Overbeck JH, Ullmann J et al (2013) LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes. Angew Chem Int Ed Engl 52:11401–11405

    Article  Google Scholar 

  • Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    Article  Google Scholar 

  • Ohki SY, Kainosho M (2008) Stable isotope labeling methods for protein NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 53:208–226

    Article  Google Scholar 

  • Pellecchia M, Sem DS, Wuthrich K (2002) NMR in drug discovery. Nat Rev Drug Discov 1:211–219

    Article  Google Scholar 

  • Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    Article  Google Scholar 

  • Perkins JR, Diboun I, Dessailly BH et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18:1233–1243

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Rosenblum G, Cooperman BS (2014) Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 588:261–268

    Article  Google Scholar 

  • Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. In: Kaptein R (ed) Focus on structural biology, 1st edn. Springer, Netherlands

    Google Scholar 

  • Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for 13C, 1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135

    Article  Google Scholar 

  • Salgueiro CA, Dantas JM (2016) Multiheme cytochromes. In: Gomes CM (ed) Protein folding and structure, 1st edn. Springer, Berlin, Heidelberg

    Google Scholar 

  • Santos H, Turner DL, Xavier AV et al (1984) Two-dimensional NMR studies of electron transfer in cytochrome c3. J Magn Reson 59:177–180

    ADS  Google Scholar 

  • Sattler M, Fesik SW (1996) Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4:1245–1249

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectrosc 34:93–158

    Article  Google Scholar 

  • Schumann FH, Riepl H, Maurer T et al (2007) Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions. J Biomol NMR 39:275–289

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N et al (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Seeliger S, Cord-Ruwisch R, Schink B (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180:3686–3691

    Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  Google Scholar 

  • Teng Q (2005) Structural biology: practical NMR applications. Springer, USA

    Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA et al (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci U S A 92:9279–9283

    Article  ADS  Google Scholar 

  • Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  Google Scholar 

  • Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    Article  Google Scholar 

  • Turner DL, Salgueiro CA, LeGall J et al (1992) Structural studies of Desulfovibrio vulgaris ferrocytochrome c3 by two-dimensional NMR. Eur J Biochem 210:931–936

    Article  Google Scholar 

  • Turner DL, Salgueiro CA, Catarino T et al (1996) NMR studies of cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. Eur J Biochem 241:723–731

    Article  Google Scholar 

  • Turner DL, Costa HS, Coutinho IB et al (1997) Assignment of the ligand geometry and redox potentials of the trihaem ferricytochrome c3 from Desulfuromonas acetoxidans. Eur J Biochem 243:474–481

    Article  Google Scholar 

  • Turner DL, Brennan L, Chamberlin SG et al (1998) Determination of solution structures of paramagnetic proteins by NMR. Eur Biophys J 27:367–375

    Article  Google Scholar 

  • van Zundert GC, Rodrigues JP, Trellet M et al (2016) The HADDOCK2.2 Web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725

    Article  Google Scholar 

  • Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of 2H, 13CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7:e43725

    Article  ADS  Google Scholar 

  • Wishart DS, Bigam CG, Yao J et al (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  Google Scholar 

  • Wittekind M, Mueller L (1993) HNCACB, a High-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson B 101:201–205

    Article  Google Scholar 

  • Yamazaki T, Lee W, Arrowsmith CH et al (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666

    Article  Google Scholar 

  • Yang D, Kay LE (1999) TROSY triple-resonance four-dimensional NMR spectroscopy of a 46 ns tumbling protein. J Am Chem Soc 121:2571–2575

    Article  Google Scholar 

  • Zhang H, van Ingen H (2016) Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr Opin Struct Biol 38:75–82

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the current and former members of the Biochemistry and Bioenergetics of Heme Proteins Research Group. Special thanks are due to Dr. Marianne Schiffer, Dr. Raj Pokkuluri and Dr. Yuri Londer (National Argonne Laboratory—University of Chicago, USA), Prof. Marta Bruix (Instituto Química Física Rocasolano, CSIC, Madrid, Spain) and Prof. David L. Turner (Instituto Tecnologia Química e Biológica António Xavier, Oeiras, Portugal) for the very stimulating collaborations. Research in the authors’ group is currently supported by Fundação para a Ciência e Tecnologia (Portugal) grants PTDC/BBB-BQB/3554/2014 (to CAS), PTDC/BIA-BQM/31981/2017 (to CAS) and SFRH/BPD/114848/2016 (to LM), and by the Applied Molecular Biosciences Unit—UCIBIO (UID/Multi/04378/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Salgueiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salgueiro, C.A., Dantas, J.M., Morgado, L. (2019). Principles of Nuclear Magnetic Resonance and Selected Biological Applications. In: Pereira, A., Tavares, P., Limão-Vieira, P. (eds) Radiation in Bioanalysis. Bioanalysis, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-28247-9_9

Download citation

Publish with us

Policies and ethics