Skip to main content

Dynamic Control of Microvessel Diameters by Metabolic Factors

  • Chapter
  • First Online:
  • 535 Accesses

Abstract

To maintain tissue function under steady state conditions and under increased workload, an adequate regulation of microvascular diameters is required. Microvessels continuously adapt to hemodynamic and metabolic stimuli. Vascular diameter increase in response to flow-induced shear stress establishes a positive feedback loop causing diameters of low-flow vessels to further decrease. This is balanced by metabolic signals released from vessels, tissue or red blood cells which can increase vascular diameters in undersupplied regions thus providing negative feedback regulation. Perturbation of these mechanisms leads to vascular maladaptation and microvascular dysfunction which underlies a multitude of clinical conditions possibly including myocardial angina in the absence of epicardial stenosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pries AR, Secomb TW, Gaehtgens P. Structural adaptation and stability of microvascular networks: theory and simulations. Am J Phys. 1998;275:H349–60.

    CAS  Google Scholar 

  2. Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension. 2005;46:726–31.

    Article  Google Scholar 

  3. Reglin B, Pries AR. Metabolic control of microvascular networks: oxygen sensing and beyond. J Vasc Res. 2014;51:376–92.

    Article  CAS  PubMed  Google Scholar 

  4. Reglin B, Secomb TW, Pries AR. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors? Am J Physiol Heart Circ Physiol. 2009;297:H2206–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pries AR, Reglin B, Secomb TW. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Phys. 2001;281:H1015–25.

    CAS  Google Scholar 

  6. Rodbard S. Vascular caliber. Cardiology. 1975;60:4–49.

    Article  CAS  PubMed  Google Scholar 

  7. Reglin B, Secomb TW, Pries AR. Structural control of microvessel diameters: origins of metabolic signals. Front Physiol. 2017;8:813.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, Piek JJ, de Wit C. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36:3134–46.

    Article  CAS  PubMed  Google Scholar 

  9. Pries AR, Hopfner M, Le Noble F, Dewhirst MW, Secomb TW. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer. 2010;10:587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Phys. 1963;204:317–22.

    Article  CAS  Google Scholar 

  11. Golub AS, Pittman RN. Recovery of radial PO(2) profiles from phosphorescence quenching measurements in microvessels. Comp Biochem Physiol A Mol Integr Physiol. 2002;132:169–76.

    Article  PubMed  Google Scholar 

  12. Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology (Bethesda). 2009;24:107–16.

    CAS  Google Scholar 

  13. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO III, Gladwin MT. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.

    Article  CAS  PubMed  Google Scholar 

  14. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81:209–37.

    Article  CAS  PubMed  Google Scholar 

  15. Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput Biol. 2013;9:e1002983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sprague RS, Hanson MS, Achilleus D, Bowles EA, Stephenson AH, Sridharan M, Adderley S, Procknow J, Ellsworth ML. Rabbit erythrocytes release ATP and dilate skeletal muscle arterioles in the presence of reduced oxygen tension. Pharmacol Rep. 2009;61:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arciero JC, Carlson BE, Secomb TW. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol. 2008;295(4):H1562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koller A, Sun D, Kaley G. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res. 1993;72:1276–84.

    Article  CAS  PubMed  Google Scholar 

  19. Pries AR, Kuebler WM, Habazettl H. Coronary microcirculation in ischemic heart disease. Curr Pharm Des. 2018;24:2893–9.

    Article  CAS  PubMed  Google Scholar 

  20. Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J. 2017;38:478–88.

    CAS  PubMed  Google Scholar 

  21. Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54:281–92.

    Article  PubMed  Google Scholar 

  22. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35:1101–11.

    Article  PubMed  Google Scholar 

  23. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40.

    Article  CAS  PubMed  Google Scholar 

  24. Bugiardini R, Bairey Merz CN. Angina with “normal” coronary arteries: a changing philosophy. JAMA. 2005;293:477–84.

    Article  CAS  PubMed  Google Scholar 

  25. Likoff W, Segal BL, Kasparian H. Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N Engl J Med. 1967;276:1063–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bugiardini R. Coronary microcirculation and ischemic heart disease, today. Curr Pharm Des. 2018;24:2891–2.

    Article  CAS  PubMed  Google Scholar 

  27. Cannon RO III, Camici PG, Epstein SE. Pathophysiological dilemma of syndrome X 11. Circulation. 1992;85:883–92.

    Article  PubMed  Google Scholar 

  28. Agrawal S, Mehta PK, Bairey Merz CN. Cardiac syndrome X: update 2014 1. Cardiol Clin. 2014;32:463–78.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kaski JC, Aldama G, Cosin-Sales J. Cardiac syndrome X. Diagnosis, pathogenesis and management. Am J Cardiovasc Drugs. 2004;4:179–94.

    Article  PubMed  Google Scholar 

  30. Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study 13. J Am Coll Cardiol. 1995;25:807–14.

    Article  CAS  PubMed  Google Scholar 

  31. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, Dorbala S, Blankstein R, Rimoldi O, Camici PG, Di Carli MF. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–27.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bugiardini R, Manfrini O, Pizzi C, Fontana F, Morgagni G. Endothelial function predicts future development of coronary artery disease: a study of women with chest pain and normal coronary angiograms. Circulation. 2004;109:2518–23.

    Article  PubMed  Google Scholar 

  33. Bugiardini R. Women, ‘non-specific’ chest pain, and normal or near-normal coronary angiograms are not synonymous with favourable outcome. Eur Heart J. 2006;27:1387–9.

    Article  PubMed  Google Scholar 

  34. Kaski JC. Provocative tests for coronary artery spasm in MINOCA: necessary and safe? Eur Heart J. 2018;39:99–101.

    Article  PubMed  Google Scholar 

  35. Pasupathy S, Tavella R, Beltrame JF. Myocardial infarction with nonobstructive coronary arteries (MINOCA): the past, present, and future management. Circulation. 2017;135:1490–3.

    Article  PubMed  Google Scholar 

  36. Agewall S, Beltrame JF, Reynolds HR, Niessner A, Rosano G, Caforio AL, De CR, Zimarino M, Roffi M, Kjeldsen K, Atar D, Kaski JC, Sechtem U, Tornvall P. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38:143–53.

    PubMed  Google Scholar 

  37. Bugiardini R, Badimon L, Collins P, Erbel R, Fox K, Hamm C, Pinto F, Rosengren A, Stefanadis C, Wallentin L, Van de Werf F. Angina, “normal” coronary angiography, and vascular dysfunction: risk assessment strategies. PLoS Med. 2007;4:e12.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marinescu MA, Loffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies 1. JACC Cardiovasc Imaging. 2015;8:210–20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Verdant CL, De BD, Bruhn A, Clausi CM, Su F, Wang Z, Rodriguez H, Pries AR, Vincent JL. Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med. 2009;37:2875–81.

    Article  PubMed  Google Scholar 

  40. Lipinska-Gediga M. Sepsis and septic shock-is a microcirculation a main player? Anaesthesiol Intensive Ther. 2016;48:261–5.

    Article  PubMed  Google Scholar 

  41. Potter EK, Hodgson L, Creagh-Brown B, Forni LG. Manipulating the microcirculation in sepsis - the impact of vasoactive medications on microcirculatory blood flow. A systematic review. Shock. 2019;52(1):5–12.

    Article  PubMed  Google Scholar 

  42. Pries AR, Cornelissen AJ, Sloot AA, Hinkeldey M, Dreher MR, Hopfner M, Dewhirst MW, Secomb TW. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol. 2009;5:e1000394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Secomb TW, Dewhirst MW, Pries AR. Structural adaptation of normal and tumour vascular networks. Basic Clin Pharmacol Toxicol. 2012;110:63–9.

    Article  CAS  PubMed  Google Scholar 

  44. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel R. Pries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pries, A.R., Reglin, B. (2020). Dynamic Control of Microvessel Diameters by Metabolic Factors. In: Dorobantu, M., Badimon, L. (eds) Microcirculation. Springer, Cham. https://doi.org/10.1007/978-3-030-28199-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28199-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28198-4

  • Online ISBN: 978-3-030-28199-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics