Advertisement

Comparison to Existing Models

  • Michael Golosovsky
Chapter
  • 262 Downloads
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)

Abstract

We make a survey of models of citation dynamics and focus on the preferential attachment and fitness models. We show that under certain realistic conditions these models are equivalent. In order to find the microscopic foundations of the preferential attachment mechanism, we analyze theoretically and experimentally several citation networks and demonstrate that, for a broad fitness distribution, this mechanism reduces to the fitness model. The fitness model yields the long-sought explanation for the initial attractivity K0, an elusive parameter which was left unexplained within the framework of the empirical preferential attachment model. We show that the initial attractivity is determined by the width of the fitness distribution. We compare the preferential attachment and fitness models to our microscopic model of citation dynamics based on recursive search and show that our model contains both these phenomenological models.

Keywords

Citation models Preferential attachment Fitness model Recursive search 

References

  1. 3.
    Albert, R., & Barabasi, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 5.
    Bagrow, J. P., & Brockmann, D. (2013). Natural emergence of clusters and bursts in network evolution. Physical Review X, 3, 021016.ADSCrossRefGoogle Scholar
  3. 7.
    Barabasi, A. L. (2015). Network science. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  4. 9.
    Barabasi, A. L., Song, C., & Wang D. (2012). Publishing: Handful of papers dominates citation. Nature, 491(7422), 40.ADSCrossRefGoogle Scholar
  5. 11.
    Bedogne, C., & Rodgers, G. J. (2006). Complex growing networks with intrinsic vertex fitness. Physical Review E, 74(4), 046115.ADSCrossRefGoogle Scholar
  6. 12.
    Bell, M., Perera, S., Piraveenan, M., Bliemer, M., Latty, T., & Reid, C. (2017). Network growth models: A behavioural basis for attachment proportional to fitness. Scientific Reports, 7, 42431.ADSCrossRefGoogle Scholar
  7. 14.
    Bianconi, G., & Barabasi, A.-L. (2001). Bose-Einstein condensation in complex networks. Physical Review Letters, 86, 5632–5635.ADSCrossRefGoogle Scholar
  8. 15.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 20.
    Bramoullé, Y., Currarini, S., Jackson, M. O., Pin, P., & Rogers, B. W. (2012). Homophily and long-run integration in social networks. Journal of Economic Theory, 147(5), 1754–1786.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 25.
    Burrell, Q. L. (2003). Predicting future citation behavior. Journal of the American Society for Information Science and Technology, 54(5), 372–378.CrossRefGoogle Scholar
  11. 28.
    Caldarelli, G. (2007). Scale-free networks: Complex webs in nature and technology. Oxford: Oxford University Press.zbMATHCrossRefGoogle Scholar
  12. 29.
    Caldarelli, G., Capocci, A., De Los Rios, P., & Muñoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters, 89(25), 258702.ADSCrossRefGoogle Scholar
  13. 32.
    Capocci, A., Servedio, V. D., Colaiori, F., Buriol, L. S., Donato, D., Leonardi, S., et al. (2006). Preferential attachment in the growth of social networks: The internet encyclopedia Wikipedia. Physical Review E, 74(3), 036116.ADSCrossRefGoogle Scholar
  14. 33.
    Carletti, T., Gargiulo, F., & Lambiotte, R. (2015). Preferential attachment with partial information. The European Physical Journal B, 88(1), 18.ADSCrossRefGoogle Scholar
  15. 35.
    Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.ADSCrossRefGoogle Scholar
  16. 36.
    Centola, D., Eguíluz, V. M., & Macy, M. W. (2007). Cascade dynamics of complex propagation. Physica A: Statistical Mechanics and Its Applications, 374(1), 449–456.ADSCrossRefGoogle Scholar
  17. 39.
    Ciotti, V., Bonaventura, M., Nicosia, V., Panzarasa, P., & Latora, V. (2016). Homophily and missing links in citation networks. EPJ Data Science, 5(1), 7.CrossRefGoogle Scholar
  18. 44.
    Csárdi, G., Strandburg, K. J., Zalányi, L., Tobochnik, J., & Érdi, P. (2007). Modeling innovation by a kinetic description of the patent citation system. Physica A: Statistical Mechanics and Its Applications, 374(2), 783–793.ADSCrossRefGoogle Scholar
  19. 47.
    Dorogovtsev, S. N., & Mendes, J. F. F. (2000). Evolution of networks with aging of sites. Physical Review E, 62(2), 1842–1845.ADSCrossRefGoogle Scholar
  20. 49.
    Eom, Y.-H., & Fortunato, S. (2011). Characterizing and modeling citation dynamics. PLoS One, 6(9), e24926.ADSCrossRefGoogle Scholar
  21. 50.
    Ergün, G., & Rodgers, G. J. (2002). Growing random networks with fitness. Physica A: Statistical Mechanics and Its Applications, 303(1), 261–272.ADSzbMATHCrossRefGoogle Scholar
  22. 54.
    Fortunato, S., Flammini, A., & Menczer, F. (2006). Scale-free network growth by ranking. Physical Review Letters, 96(21), 218701.ADSCrossRefGoogle Scholar
  23. 60.
    Geng, X., & Wang, Y. (2009). Degree correlations in citation networks model with aging. Europhysics Letters, 88(3), 38002.ADSMathSciNetCrossRefGoogle Scholar
  24. 61.
    Ghadge, S., Killingback, T., Sundaram, B., & Tran, D. A. (2010). A statistical construction of power-law networks. International Journal of Parallel, Emergent and Distributed Systems, 25(3), 223–235.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 65.
    Gleeson, J. P., Cellai, D., Onnela, J.-P., Porter, M. A., & Reed-Tsochas, F. (2014). A simple generative model of collective online behavior. Proceedings of the National Academy of Sciences, 111(29), 10411–10415.ADSCrossRefGoogle Scholar
  26. 66.
    Goldberg, S. R., Anthony, H., & Evans, T. S. (2015). Modelling citation networks. Scientometrics, 105(3), 1577–1604.CrossRefGoogle Scholar
  27. 67.
    Golosovsky, M. (2017). Power-law citation distributions are not scale-free. Physical Review E, 96(3), 032306.ADSCrossRefGoogle Scholar
  28. 68.
    Golosovsky, M. (2018). Mechanisms of complex network growth: Synthesis of the preferential attachment and fitness models. Physical Review E, 97(6), 062310.ADSCrossRefGoogle Scholar
  29. 70.
    Golosovsky, M., & Solomon, S. (2012). Stochastic dynamical model of a growing citation network based on a self-exciting point process. Physical Review Letters, 109(9), 098701.ADSCrossRefGoogle Scholar
  30. 71.
    Golosovsky, M., & Solomon, S. (2013). The transition towards immortality: Non-linear autocatalytic growth of citations to scientific papers. Journal of Statistical Physics, 151(1–2), 340–354.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 72.
    Golosovsky, M., & Solomon, S. (2017). Growing complex network of citations of scientific papers: Modeling and measurements. Physical Review E, 95(1), 012324.ADSCrossRefGoogle Scholar
  32. 73.
    Hajra, K. B., & Sen, P. (2006). Modelling aging characteristics in citation networks. Physica A: Statistical Mechanics and Its Applications, 368(2), 575–582.ADSCrossRefGoogle Scholar
  33. 76.
    Higham, K. W., Governale, M., Jaffe, A. B., & Zülicke, U. (2017). Fame and obsolescence: Disentangling growth and aging dynamics of patent citations. Physical Review E, 95(4), 042309.ADSCrossRefGoogle Scholar
  34. 77.
    Higham, K. W., Governale, M., Jaffe, A. B., & Zülicke, U. (2017). Unraveling the dynamics of growth, aging and inflation for citations to scientific articles from specific research fields. Journal of Informetrics, 11(4), 1190–1200.CrossRefGoogle Scholar
  35. 82.
    Jackson, M. O., & Rogers, B. W. (2007). Meeting strangers and friends of friends: How random are social networks? American Economic Review, 97(3), 890–915.CrossRefGoogle Scholar
  36. 83.
    Jeong, H., Néda, Z., & Barabási, A.-L. (2003). Measuring preferential attachment in evolving networks. Europhysics Letters, 61(4), 567–572.ADSCrossRefGoogle Scholar
  37. 84.
    Ke, Q., Ferrara, E., Radicchi, F., & Flammini, A. (2015). Defining and identifying sleeping beauties in science. Proceedings of the National Academy of Sciences, 112(24), 7426–7431.ADSCrossRefGoogle Scholar
  38. 87.
    Kong, J. S., Sarshar, N., & Roychowdhury, V. P. (2008). Experience versus talent shapes the structure of the Web. Proceedings of the National Academy of Sciences, 105(37), 13724–13729.ADSCrossRefGoogle Scholar
  39. 88.
    Krapivsky, P. L., & Redner, S. (2001). Organization of growing random networks. Physical Review E, 63(6), 066123.ADSCrossRefGoogle Scholar
  40. 89.
    Krapivsky, P. L., & Redner, S. (2005). Network growth by copying. Physical Review E, 71, 036118.ADSCrossRefGoogle Scholar
  41. 90.
    Kunegis, J., Blattner, M., & Moser, C. (2013). Preferential attachment in online networks. In Proceedings of the 5th Annual ACM Web Science Conference. New York, NY: Association for Computing Machinery.Google Scholar
  42. 91.
    Lambiotte, R., & Ausloos, M. (2007). Growing network with j-redirection. Europhysics Letters, 77(5), 58002.ADSMathSciNetCrossRefGoogle Scholar
  43. 92.
    Lambiotte, R., Krapivsky, P. L., Bhat, U., & Redner, S. (2016). Structural transitions in densifying networks. Physical Review Letters, 117(21), 218301.ADSCrossRefGoogle Scholar
  44. 95.
    Leskovec, J., Backstrom, L., Kumar, R., & Tomkins, A. (2008). Microscopic evolution of social networks. In Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 08. New York, NY: Association for Computing Machinery.Google Scholar
  45. 96.
    Leskovec, J., Kleinberg, J., & Faloutsos, C. (2005). Graphs over time. In Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining - KDD 05. New York, NY: Association for Computing Machinery.Google Scholar
  46. 101.
    Liben-Nowell, D., & Kleinberg, J. (2003). The link prediction problem for social networks. In Proceedings of the Twelfth International Conference on Information and Knowledge Management - CIKM. New York, NY: Association for Computing Machinery.Google Scholar
  47. 104.
    Luck, J. M., & Mehta, A. (2017). How the fittest compete for leadership: A tale of tails. Physical Review E, 95(6), 062306.ADSCrossRefGoogle Scholar
  48. 106.
    Martin, T., Ball, B., Karrer, B., & Newman, M. E. J. (2013). Coauthorship and citation patterns in the physical review. Physical Review E, 88(1), 012814.ADSCrossRefGoogle Scholar
  49. 107.
    Medo, M., Cimini, G., & Gualdi, S. (2011). Temporal effects in the growth of networks. Physical Review Letters, 107, 238701.ADSCrossRefGoogle Scholar
  50. 108.
    Menczer, F. (2004). Evolution of document networks. Proceedings of the National Academy of Sciences, 101(Supplement 1), 5261–5265.ADSCrossRefGoogle Scholar
  51. 109.
    Miller, B. A., & Bliss, N. T. (2012). A stochastic system for large network growth. IEEE Signal Processing Letters, 19(6), 356–359.ADSCrossRefGoogle Scholar
  52. 113.
    Mislove A., Koppula H. S., Gummadi K. P., Druschel P., & Bhattacharjee B. (2013). An empirical validation of growth models for complex networks. In A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, & B. Mitra (Eds.), Dynamics on and of complex networks. Modeling and simulation in science, engineering and technology (Vol. 2). New York, NY: Birkhäuser.Google Scholar
  53. 118.
    Mokryn, O., Wagner, A., Blattner, M., Ruppin, E., & Shavitt, Y. (2016). The role of temporal trends in growing networks. PLoS One, 11(8), e0156505.CrossRefGoogle Scholar
  54. 121.
    Newman, M. (2010). Networks. Oxford: Oxford University Press.zbMATHCrossRefGoogle Scholar
  55. 122.
    Newman, M. E. (2001). Clustering and preferential attachment in growing networks. Physical Review E, 64(2), 025102.ADSCrossRefGoogle Scholar
  56. 124.
    Newman, M. E. J. (2009). The first-mover advantage in scientific publication. Europhysics Letters, 86(6), 68001.ADSCrossRefGoogle Scholar
  57. 125.
    Newman, M. E. J. (2014). Prediction of highly cited papers. Europhysics Letters, 105(2), 28002.ADSCrossRefGoogle Scholar
  58. 126.
    Nguyen, K., & Tran, D. A. (2012). Fitness-based generative models for power-law networks. In Handbook of optimization in complex networks (pp. 39–53). Berlin: Springer.CrossRefGoogle Scholar
  59. 127.
    Ostroumova-Prokhorenkova, L., & Samosvat, E. (2016). Recency-based preferential attachment models. Journal of Complex Networks, 4(4), 475–499.MathSciNetGoogle Scholar
  60. 128.
    Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguñá, M., & Krioukov, D. (2012). Popularity versus similarity in growing networks. Nature, 489(7417), 537–540.ADSCrossRefGoogle Scholar
  61. 131.
    Perc, M. (2014).The Matthew effect in empirical data. Journal of the Royal Society Interface, 11, 20140378.CrossRefGoogle Scholar
  62. 134.
    Pham, T., Sheridan, P., & Shimodaira, H. (2015). PAFit: A statistical method for measuring preferential attachment in temporal complex networks. PLoS One, 10(9), e0137796.CrossRefGoogle Scholar
  63. 135.
    Pham, T., Sheridan, P., & Shimodaira, H. (2016). Joint estimation of preferential attachment and node fitness in growing complex networks. Scientific Reports, 6, 32558.ADSCrossRefGoogle Scholar
  64. 138.
    Price, D. D. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.CrossRefGoogle Scholar
  65. 144.
    Redner, S. (2005). Citation statistics from 110 years of Physical Review. Physics Today, 58(6), 49–54.CrossRefGoogle Scholar
  66. 145.
    Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). Memory in network flows and its effects on spreading dynamics and community detection. Nature Communications, 5, 4630.ADSCrossRefGoogle Scholar
  67. 149.
    Sendiña-Nadal, I., Danziger, M. M., Wang, Z., Havlin, S., & Boccaletti, S. (2016). Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks. Scientific Reports, 6(1), 21297.ADSCrossRefGoogle Scholar
  68. 150.
    Servedio, V. D. P., Caldarelli, G., & Buttà, P. (2004). Vertex intrinsic fitness: How to produce arbitrary scale-free networks. Physical Review E, 70(5), 056126.ADSCrossRefGoogle Scholar
  69. 154.
    Simkin, M. V., & Roychowdhury, V. P. (2007). A mathematical theory of citing. Journal of the American Society for Information Science and Technology, 58(11), 1661–1673.CrossRefGoogle Scholar
  70. 162.
    Šubelj, L., & Bajec, M. (2013). Model of complex networks based on citation dynamics. In Proceedings of the WWW Workshop on Large Scale Network Analysis, 2013:(LSNA’13) (pp.527–530).Google Scholar
  71. 170.
    Vazquez, A. (2001). Disordered networks generated by recursive searches. Europhysics Letters, 54(4), 430–435.ADSCrossRefGoogle Scholar
  72. 175.
    Wang, D., Song, C., & Barabsi, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.ADSCrossRefGoogle Scholar
  73. 176.
    Wang, M., Yu, G., & Yu, D. (2008). Measuring the preferential attachment mechanism in citation networks. Physica A: Statistical Mechanics and Its Applications, 387(18), 4692–4698.ADSCrossRefGoogle Scholar
  74. 178.
    Wu, Y., Fu, T. Z. J., & Chiu, D. M. (2014). Generalized preferential attachment considering aging. Journal of Informetrics, 8(3), 650–658.CrossRefGoogle Scholar
  75. 179.
    Wu, Z.-X., & Holme, P. (2009). Modeling scientific-citation patterns and other triangle-rich acyclic networks. Physical Review E, 80, 037101.ADSCrossRefGoogle Scholar
  76. 180.
    Xie, Z., Ouyang, Z., Liu, Q., & Li, J. (2016). A geometric graph model for citation networks of exponentially growing scientific papers. Physica A: Statistical Mechanics and Its Applications, 456, 167–175.ADSCrossRefGoogle Scholar
  77. 187.
    Zhou, J., Zeng, A., Fan, Y., & Di, Z. (2016) Ranking scientific publications with similarity-preferential mechanism. Scientometrics, 106(2), 805–816.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Golosovsky
    • 1
  1. 1.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations