Prediction of Citation Dynamics of Individual Papers

  • Michael Golosovsky
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


We apply stochastic model of citation dynamics of individual papers developed in Chap.  3 to forecast citation career of individual papers. We focus not only on the estimate of the future citations of a paper but on the probabilistic margins of such estimate as well.


Citation forecast Fitness Timeliness Citation trajectory 


  1. 1.
    Adams, J. (2005). Early citation counts correlate with accumulated impact. Scientometrics, 63(3), 567–581.CrossRefGoogle Scholar
  2. 16.
    Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A principal component analysis of 39 scientific impact measures. PLoS One, 4(6), e6022.ADSCrossRefGoogle Scholar
  3. 23.
    Brot, H., & Louzoun, Y. Private communication.Google Scholar
  4. 31.
    Cao, X., Chen, Y., & Ray Liu, K. J. (2016). A data analytic approach to quantifying scientific impact. Journal of Informetrics, 10(2), 471–484.CrossRefGoogle Scholar
  5. 34.
    Castillo, C., Donato, D., & Gionis, A. (2007). Estimating number of citations using author reputation. In N. Ziviani & R. Baeza-Yates (Eds.), String processing and information retrieval (pp. 107–117). Berlin: Springer.CrossRefGoogle Scholar
  6. 40.
    Clauset, A., Larremore, D. B., & Sinatra, R. (2017). Data-driven predictions in the science of science. Science, 355(6324), 477–480.ADSCrossRefGoogle Scholar
  7. 46.
    Didegah, F., & Thelwall, M. (2013). Which factors help authors produce the highest impact research? Collaboration, journal and document properties. Journal of Informetrics, 7(4), 861–873.CrossRefGoogle Scholar
  8. 54.
    Fortunato, S., Flammini, A., & Menczer, F. (2006). Scale-free network growth by ranking. Physical Review Letters, 96(21), 218701.ADSCrossRefGoogle Scholar
  9. 55.
    Fox, C. W., Timothy Paine, C. E., & Sauterey, B. (2019). Citations increase with manuscript length, author number, and references cited in ecology journals. Ecology and Evolution, 6(21), 7717–7726.CrossRefGoogle Scholar
  10. 64.
    Glanzel, W., Schlemmer, B., & Thijs, B. (2003). Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon. Scientometrics, 58(3), 571–586.CrossRefGoogle Scholar
  11. 69.
    Golosovsky, M., & Solomon, S. (2012). Runaway events dominate the heavy tail of citation distributions. The European Physical Journal, 205(1), 303–311.ADSGoogle Scholar
  12. 72.
    Golosovsky, M., & Solomon, S. (2017). Growing complex network of citations of scientific papers: Modeling and measurements. Physical Review E, 95(1), 012324.ADSCrossRefGoogle Scholar
  13. 74.
    Hazouglou, M. J., Kulkarni, V., Skiena, S. S., & Dill, K. A. (2017). Citation histories of papers: sometimes the rich get richer, sometimes they don’t. Preprint arXiv:1703.04746.Google Scholar
  14. 75.
    Higham, K. W., Governale, M., Jaffe, A. B., & Zülicke, U. (2019). Ex-ante measure of patent quality reveals intrinsic fitness for citation-network growth. Physical Review E, 99(6), 060301.ADSCrossRefGoogle Scholar
  15. 84.
    Ke, Q., Ferrara, E., Radicchi, F., & Flammini, A. (2015). Defining and identifying sleeping beauties in science. Proceedings of the National Academy of Sciences, 112(24), 7426–7431.ADSCrossRefGoogle Scholar
  16. 85.
    Ke, W. (2013). A fitness model for scholarly impact analysis. Scientometrics, 94(3), 981–998.CrossRefGoogle Scholar
  17. 86.
    Klimek, P., Jovanovic, A. S., Egloff, R., & Schneider, R. (2016). Successful fish go with the flow: Citation impact prediction based on centrality measures for term–document networks. Scientometrics, 107(3), 1265–1282.CrossRefGoogle Scholar
  18. 87.
    Kong, J. S., Sarshar, N., & Roychowdhury, V. P. (2008). Experience versus talent shapes the structure of the Web. Proceedings of the National Academy of Sciences, 105(37), 13724–13729.ADSCrossRefGoogle Scholar
  19. 93.
    Larivière, V., & Gingras, Y. (2010). The impact factor’s Matthew effect: A natural experiment in bibliometrics. Journal of the Association for Information Science & Technology, 61(2), 424–427.Google Scholar
  20. 98.
    Letchford, A., Moat, H. S., & Preis, T. (2015). The advantage of short paper titles. Royal Society Open Science, 2(8), 150266.ADSCrossRefGoogle Scholar
  21. 99.
    Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2018). Discontinuities in citation relations among journals: Self-organized criticality as a model of scientific revolutions and change. Scientometrics, 116(1), 623–644.CrossRefGoogle Scholar
  22. 100.
    Li, L., & Tong, H. (2015). The child is father of the man: Foresee the success at the early stage. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: ACM.Google Scholar
  23. 105.
    Mariani, M. S., Medo, M., & Lafond, F. (2019). Early identification of important patents: Design and validation of citation network metrics. Technological Forecasting and Social Change, 146 , 644–654.CrossRefGoogle Scholar
  24. 119.
    Mukherjee, S., Romero, D. M., Jones, B., & Uzzi, B. (2017). The nearly universal link between the age of past knowledge and tomorrows breakthroughs in science and technology: The hotspot. Science Advances, 3(4), e1601315.ADSCrossRefGoogle Scholar
  25. 124.
    Newman, M. E. J. (2009). The first-mover advantage in scientific publication. Europhysics Letters, 86(6), 68001.ADSCrossRefGoogle Scholar
  26. 132.
    Peters, H. P. F., & van Raan, A. F. J. (1994). On determinants of citation scores: A case study in chemical engineering. Journal of the American Society for Information Science, 45(1), 39–49.CrossRefGoogle Scholar
  27. 134.
    Pham, T., Sheridan, P., & Shimodaira, H. (2015). PAFit: A statistical method for measuring preferential attachment in temporal complex networks. PLoS One, 10(9), e0137796.CrossRefGoogle Scholar
  28. 135.
    Pham, T., Sheridan, P., & Shimodaira, H. (2016). Joint estimation of preferential attachment and node fitness in growing complex networks. Scientific Reports, 6, 32558.ADSCrossRefGoogle Scholar
  29. 137.
    Ponomarev, I. V., Lawton, B. K., Williams, D. E., & Schnell, J. D. (2014). Breakthrough paper indicator 2.0: Can geographical diversity and interdisciplinarity improve the accuracy of outstanding papers prediction? Scientometrics, 100(3), 755–765.Google Scholar
  30. 144.
    Redner, S. (2005). Citation statistics from 110 years of Physical Review. Physics Today, 58(6), 49–54.CrossRefGoogle Scholar
  31. 154.
    Simkin, M. V., & Roychowdhury, V. P. (2007). A mathematical theory of citing. Journal of the American Society for Information Science and Technology, 58(11), 1661–1673.CrossRefGoogle Scholar
  32. 159.
    Stegehuis, C., Litvak, N., & Waltman, L. (2015). Predicting the long-term citation impact of recent publications. Journal of Informetrics, 9(3), 642–657.CrossRefGoogle Scholar
  33. 160.
    Stringer, M. J., Sales-Pardo, M., & Amaral, L. A. N. (2008). Effectiveness of journal ranking schemes as a tool for locating information. PLoS One, 3(2), e1683.ADSCrossRefGoogle Scholar
  34. 164.
    Tahamtan, I., Afshar, A. S., & Ahamdzadeh, K. (2016). Factors affecting number of citations: a comprehensive review of the literature. Scientometrics, 107(3), 1195–1225.CrossRefGoogle Scholar
  35. 167.
    Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.ADSCrossRefGoogle Scholar
  36. 169.
    van Raan, A. F. J. (2004). Sleeping beauties in science. Scientometrics, 59(3), 467–472.CrossRefGoogle Scholar
  37. 175.
    Wang, D., Song, C., & Barabsi, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.ADSCrossRefGoogle Scholar
  38. 181.
    Yan, R., Huang, C., Tang, J., Zhang, Y., & Li, X. (2012). To better stand on the shoulder of giants. In Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’12 (pp. 51–60). New York, NY: ACM.CrossRefGoogle Scholar
  39. 182.
    Yan, R., Tang, J., Liu, X., Shan, D., & Li, X. (2011). Citation count prediction: Learning to estimate future citations for literature. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM ’11 (pp. 1247–1252). New York, NY: ACM.Google Scholar
  40. 185.
    Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714–715, 1–73.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Golosovsky
    • 1
  1. 1.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations