Comparison of Citation Dynamics for Different Disciplines

  • Michael Golosovsky
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


We demonstrate our measurements of citation dynamics of the Physics, Mathematics, and Economics papers. Our model captures them very well. We discuss the similarity and distinctions between citation dynamics of the papers belonging to different disciplines.


Citation dynamics Citation distribution Citation lifetime Longevity Uncitedness Universality 


  1. 14.
    Bianconi, G., & Barabasi, A.-L. (2001). Bose-Einstein condensation in complex networks. Physical Review Letters, 86, 5632–5635.ADSCrossRefGoogle Scholar
  2. 17.
    Bornmann, L., & Daniel, H.-D. (2009). Universality of citation distributions—A validation of Radicchi et al.’s relative indicator c f = cc 0 at the micro level using data from chemistry. Journal of the American Society for Information Science and Technology, 60(8), 1664–1670.CrossRefGoogle Scholar
  3. 18.
    Bornmann, L., & Haunschild, R. (2016). Citation score normalized by cited references (CSNCR): The introduction of a new citation impact indicator. Journal of Informetrics, 10(3), 875–887.CrossRefGoogle Scholar
  4. 27.
    Burrell, Q. L. (2013). A stochastic approach to the relation between the impact factor and the uncitedness factor. Journal of Informetrics, 7(3), 676–682.CrossRefGoogle Scholar
  5. 38.
    Chatterjee, A., Ghosh, A., & Chakrabarti, B. K. (2014). Universality of citation distributions for academic institutions and journals. PLoS One, 11, e0146762.CrossRefGoogle Scholar
  6. 42.
    Clough, J. R., Gollings, J., Loach, T. V., & Evans, T. S. (2014). Transitive reduction of citation networks. Journal of Complex Networks, 3(2), 189–203.MathSciNetCrossRefGoogle Scholar
  7. 67.
    Golosovsky, M. (2017). Power-law citation distributions are not scale-free. Physical Review E, 96(3), 032306.ADSCrossRefGoogle Scholar
  8. 80.
    Hsu, J. W., & Huang, D. W. (2012). A scaling between impact factor and uncitedness. Physica A: Statistical Mechanics and Its Applications, 391(5), 2129–2134.ADSMathSciNetCrossRefGoogle Scholar
  9. 87.
    Kong, J. S., Sarshar, N., & Roychowdhury, V. P. (2008). Experience versus talent shapes the structure of the Web. Proceedings of the National Academy of Sciences, 105(37), 13724–13729.ADSCrossRefGoogle Scholar
  10. 102.
    Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5), 341–352.CrossRefGoogle Scholar
  11. 139.
    Radicchi, F., & Castellano, C. (2011). Rescaling citations of publications in physics. Physical Review E, 83(4), 046116.ADSCrossRefGoogle Scholar
  12. 140.
    Radicchi, F., & Castellano, C. (2012). A reverse engineering approach to the suppression of citation biases reveals universal properties of citation distributions. PLoS One, 7(3), e33833.ADSCrossRefGoogle Scholar
  13. 141.
    Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268–17272.ADSCrossRefGoogle Scholar
  14. 148.
    Seglen, P. O. (1992). The skewness of science. Journal of the American Society for Information Science, 43(9), 628–638.CrossRefGoogle Scholar
  15. 168.
    Van Noorden, R. (2017). The science that’s never been cited. Nature, 552, 162–164.ADSCrossRefGoogle Scholar
  16. 174.
    Waltman, L., van Eck, N. J., & van Raan, A. F. (2012). Universality of citation distributions revisited. Journal of the American Society for Information Science and Technology, 63(1), 72–77.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Golosovsky
    • 1
  1. 1.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations