Complex Network of Scientific Papers

  • Michael Golosovsky
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


We consider scientific publications as a growing complex network where papers are nodes and citations are links which connect these papers together. We explain this network approach and make special accent on the temporal aspect of citation network, namely, we focus on the growth of the number of papers, age distribution of references, and citation dynamics. We trace relation of the age distribution of references to citation dynamics and explore this reference-citation duality.


Complex network Citation analysis Reference list Growing science 


  1. 7.
    Barabasi, A. L. (2015). Network science. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  2. 13.
    Bertin, M., Atanassova, I., Gingras, Y., & Larivière, V. (2015). The invariant distribution of references in scientific articles. Journal of the Association for Information Science and Technology, 67(1), 164–177.CrossRefGoogle Scholar
  3. 18.
    Bornmann, L., & Haunschild, R. (2016). Citation score normalized by cited references (CSNCR): The introduction of a new citation impact indicator. Journal of Informetrics, 10(3), 875–887.CrossRefGoogle Scholar
  4. 21.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., et. al. (2000). Graph structure in the web. Computer Networks, 33(1–6), 309–320.CrossRefGoogle Scholar
  5. 28.
    Caldarelli, G. (2007). Scale-free networks: Complex webs in nature and technology. Oxford: Oxford University Press.CrossRefGoogle Scholar
  6. 37.
    Chakrabarti, B. K.,& Sen, P. (2014). Sociophysics: An introduction. Oxford: Oxford University Press.Google Scholar
  7. 51.
    Evans, T. S., Hopkins, N., & Kaube, B. S. (2012). Universality of performance indicators based on citation and reference counts. Scientometrics, 93(2), 473–495.CrossRefGoogle Scholar
  8. 52.
    Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.ADSMathSciNetCrossRefGoogle Scholar
  9. 53.
    Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., et al. (2018). Science of science. Science, 359(6379), eaao0185.CrossRefGoogle Scholar
  10. 57.
    Garavaglia, A., Hofstad, R., & Woeginger, G. (2017). The dynamics of power laws: Fitness and aging in preferential attachment trees. Journal of Statistical Physics, 168(6), 1137–1179.ADSMathSciNetCrossRefGoogle Scholar
  11. 59.
    Geller, N. L., de Cani, J. S., & Davies, R. E. (1981). Lifetime-citation rates: A mathematical model to compare scientists’ work. Journal of the American Society for Information Science, 32(1), 1–15.CrossRefGoogle Scholar
  12. 63.
    Glanzel, W. (2004). Towards a model for diachronous and synchronous citation analyses. Scientometrics, 60(3), 511–522.CrossRefGoogle Scholar
  13. 67.
    Golosovsky, M. (2017). Power-law citation distributions are not scale-free. Physical Review E, 96(3), 032306.ADSCrossRefGoogle Scholar
  14. 72.
    Golosovsky, M., & Solomon, S. (2017). Growing complex network of citations of scientific papers: Modeling and measurements. Physical Review E, 95(1), 012324.ADSCrossRefGoogle Scholar
  15. 89.
    Krapivsky, P. L., & Redner, S. (2005). Network growth by copying. Physical Review E, 71, 036118.ADSCrossRefGoogle Scholar
  16. 97.
    Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 2.CrossRefGoogle Scholar
  17. 106.
    Martin, T., Ball, B., Karrer, B., & Newman, M. E. J. (2013). Coauthorship and citation patterns in the physical review. Physical Review E, 88(1), 012814.ADSCrossRefGoogle Scholar
  18. 120.
    Nakamoto, H. (1988). Synchronous and diachronous citation distributions. Informetrics, 87/88, 157–163.Google Scholar
  19. 121.
    Newman, M. (2010). Networks. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. 143.
    Redner, S. (2004). Citation statistics from more than a century of Physical Review. Preprint arXiv:physics/0407137.Google Scholar
  21. 146.
    Roth, C., Wu, J., & Lozano, S. (2012). Assessing impact and quality from local dynamics of citation networks. Journal of Informetrics, 6(1), 111–120.CrossRefGoogle Scholar
  22. 155.
    Sinatra, R., Deville, P., Szell, M., Wang, D., & Barabsi, A. L. (2015). A century of physics. Nature Physics, 11:791.ADSCrossRefGoogle Scholar
  23. 157.
    Solomon, S., Yaari, G., Dover, Y., & Moulet, S. (2009). Do all economies grow equally fast? Risk and Decision Analysis, 1(3), 171–185.Google Scholar
  24. 166.
    Šubelj, L., & Fiala, D. (2017). Publication boost in Web of Science journals and its effect on citation distributions. Journal of the Association for Information Science and Technology, 68(4), 1018–1023.CrossRefGoogle Scholar
  25. 171.
    Vazquez, A. (2001). Statistics of citation networks. Preprint arXiv:cond-mat/0105031.Google Scholar
  26. 183.
    Yin, Y., & Wang, D. (2017). The time dimension of science: Connecting the past to the future. Journal of Informetrics, 11(2), 608–621.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Golosovsky
    • 1
  1. 1.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations