Advertisement

Introduction

  • Michael Golosovsky
Chapter
  • 294 Downloads
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)

Abstract

We explain what is citation analysis and which role it plays in the research of power-law statistical distributions, complex networks, and bibliometrics.

Keywords

Bibliometrics Power law distribution Complex networks Citation analysis 

References

  1. 4.
    Auerbach, F. (1913). Das Gesetz der Bevölkerungskonzentration. Petermanns Geographische Mittelungen 59, 74–76.Google Scholar
  2. 6.
    Bar-Ilan, J. (2008). Informetrics at the beginning of the 21st century–a review. Journal of Informetrics, 2(1), 1–52.CrossRefGoogle Scholar
  3. 7.
    Barabasi, A. L. (2015). Network science. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  4. 8.
    Barabasi, A. L., & Albert R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.ADSMathSciNetCrossRefGoogle Scholar
  5. 19.
    Bradford, S. C. (1934). Sources of information on specific subjects, Engineering: An Illustrated Weekly Journal (London), 137, 85–86. Reprinted as: Bradford, S. C. (1985). Sources of information on specific subjects. Journal of Information Science, 10(4), 176–180.Google Scholar
  6. 41.
    Clauset, A., Shalizi, C., & Newman, M. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.ADSMathSciNetCrossRefGoogle Scholar
  7. 43.
    Condon, E. U. (1928). Statistics of vocabulary. Science, 67(1733), 300.ADSCrossRefGoogle Scholar
  8. 45.
    de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.ADSCrossRefGoogle Scholar
  9. 53.
    Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., et al. (2018). Science of science. Science, 359(6379), eaao0185.CrossRefGoogle Scholar
  10. 58.
    Garfield, E. (1998). Random thoughts on citationology its theory, & practice. Scientometrics, 43(1), 69–76.CrossRefGoogle Scholar
  11. 79.
    Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.ADSCrossRefGoogle Scholar
  12. 81.
    Huberman, B. A., & Adamic, L. A. (1999). Evolutionary dynamics of the World Wide Web. Preprint arXiv:cond-mat/9901071.Google Scholar
  13. 103.
    Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(11), 317–323.Google Scholar
  14. 112.
    Mingers, J., & Leydesdorff, L. (2015). A review of theory, & practice in scientometrics. European Journal of Operational Research, 246(1), 1–19.CrossRefGoogle Scholar
  15. 116.
    Moed, H. F. (2005). Citation analysis in research evaluation. Berlin: Springer.Google Scholar
  16. 129.
    Pareto, V. (1909). Manuel d’economie politique. Paris: Giard & Briére.Google Scholar
  17. 138.
    Price, D. D. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.CrossRefGoogle Scholar
  18. 142.
    Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B, 4(2), 131–134.ADSCrossRefGoogle Scholar
  19. 147.
    Scharnhorst, A., Börner, K., & van den Besselaar, P. A. A. (2012). Models of science dynamics; Encounters between complexity theory and information sciences. Understanding complex systems. Berlin: Springer.Google Scholar
  20. 153.
    Shockley, W. (1957). On the statistics of individual variations of productivity in research laboratories. Proceedings of the IRE, 45(3), 279–290.CrossRefGoogle Scholar
  21. 155.
    Sinatra, R., Deville, P., Szell, M., Wang, D., & Barabsi, A. L. (2015). A century of physics. Nature Physics, 11:791.ADSCrossRefGoogle Scholar
  22. 156.
    Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265–269.MathSciNetCrossRefGoogle Scholar
  23. 163.
    Sugimoto, C. R., & Cronin, B. (2014). Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. Cambridge: The MIT Press.Google Scholar
  24. 173.
    Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391.CrossRefGoogle Scholar
  25. 175.
    Wang, D., Song, C., & Barabsi, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.ADSCrossRefGoogle Scholar
  26. 184.
    Zener, C. (1968). An analysis of scientific productivity. Proceedings of the National Academy of Sciences of the United States of America, 59(4), 1078–1081.ADSCrossRefGoogle Scholar
  27. 185.
    Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714–715, 1–73.ADSMathSciNetCrossRefGoogle Scholar
  28. 188.
    Zipf, G. K. (1949) Human behaviour and the principle of least effort. Reading, MA: Addison-Wesley.Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Golosovsky
    • 1
  1. 1.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations