Skip to main content

Accelerated Boundary Element Method for 3D Simulations of Bubble Cluster Dynamics in an Acoustic Field

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1063))

Abstract

In this study, we develop a numerical approach based on the fast multipole method (FMM) to accelerate the iterative solution of the boundary element method (BEM) for bubble dynamics in the presence of an acoustic field. The FMM for 3D Laplace equation is accelerated by applying heterogeneous hardware, including multi-core CPUs and graphics processors. Problems of mesh stabilization are resolved by using a shape filter based on the spherical harmonic expansions of the bubble surface. We discuss the accuracy and performance of the algorithm. We demonstrate that the approach enables the simulation of the dynamics of regular monodisperse bubble clusters with thousands of bubbles and millions of boundary elements on modern personal workstations. The algorithm is scalable and can be extended to larger systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. J. Fluid Mech. 9, 145–185 (1977). https://doi.org/10.1146/annurev.fl.09.010177.001045

    Article  MATH  Google Scholar 

  2. Akhatov, I., Gumerov, N., Ohl, C.-D., Parlitz, U., Lauterborn, W.: The role of surface tension in stable single-bubble sonoluminescence. Phys. Rev. Lett. 78(2), 227–230 (1997). https://doi.org/10.1103/PhysRevLett.78.227

    Article  Google Scholar 

  3. Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73(10), 88 (2010). https://doi.org/10.1088/0034-4885/73/10/106501

    Article  Google Scholar 

  4. Gumerov, N.A., Akhatov, I.S.: Numerical simulation of 3D self-organization of bubbles in acoustic fields. In: Ohl, C.-D., Klaseboer, E., Ohl, S.W., Gong, S.W., Khoo B.C. (eds.) Proceedings of the 8th International Symposium on Cavitation, Singapore (2012)

    Google Scholar 

  5. Canot, E., Achard, J.-L.: An overview of boundary integral formulations for potential flows in fluid-fluid systems. Arch. Mech. 43(4), 453–498 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Blake, J.R., Gibson, D.C.: Cavitation bubbles near boundaries. Ann. Rev. Fluid Mech. 19, 99–123 (1987). https://doi.org/10.1146/annurev.fl.19.010187.000531

    Article  Google Scholar 

  7. Best, J.P., Kucera, A.: A numerical investigation of nonspherical rebounding bubbles. J. Fluid Mech. 245, 137–154 (1992). https://doi.org/10.1017/S0022112092000387

    Article  MATH  Google Scholar 

  8. Oguz, H.N., Prosperetti, A.: Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111–145 (1993). https://doi.org/10.1017/S0022112093003015

    Article  Google Scholar 

  9. Chahine, G.L., Duraiswami, R.: Dynamical interactions in a multibubble cloud. ASME J. Fluids Eng. 114, 680–686 (1992). https://doi.org/10.1115/1.2910085

    Article  Google Scholar 

  10. Zhang, Y.L., Yeo, K.S., Khoo, B.C., Wang, C.: 3D jet impact and toroidal bubbles. J. Comput. Phys. 166, 336–360 (2001). https://doi.org/10.1006/jcph.2000.6658

    Article  MATH  Google Scholar 

  11. Bui, T.T., Ong, E.T., Khoo, B.C., Klaseboer, E., Hung, K.C.: A fast algorithm for modeling multiple bubbles dynamics. J. Comp. Physics. 216, 430–453 (2006). https://doi.org/10.1016/j.jcp.2005.12.009

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, M., Klaseboer, E., Khoo, B.C.: On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407–429 (2007). https://doi.org/10.1017/S0022112006003296

    Article  MathSciNet  MATH  Google Scholar 

  13. Itkulova, Yu.A., Abramova, O.A., Gumerov, N.A., Akhatov, I.S.: Boundary element simulations of free and forced bubble oscillations in potential flow. In: Proceedings of IMECE 2014, Canada, Montreal, vol. 7 (2014). https://doi.org/10.1115/IMECE2014-36972

  14. Itkulova(Pityuk), Yu.A., Abramova, O.A., Gumerov, N.A., Akhatov, I.S.: Simulation of bubble dynamics in three-dimensional potential flows on heterogeneous computing systems using the fast multipole and boundary element methods. Numer. Methods Program. 15, 239–257 (2014). [In Russian]

    Google Scholar 

  15. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  16. Gumerov, N.A., Duraiswami, R.: Data structures, optimal choice of parameters, and complexity results for generalized multilevel fast multipole method in d dimensions. Technical report CS-TR-4458. University of Maryland, College Park (2003). https://doi.org/10.1016/B978-0-08-044371-3.X5000-5

  17. Gumerov, N.A., Duraiswami, R.: Fast Multipole Methods for the Helmholtz Equation in Three Dimensions. Elsevier, Oxford (2005)

    MATH  Google Scholar 

  18. Gumerov, N.A., Duraiswami, R.: Comparison of the efficiency of translation operators used in the fast multipole method for 3D Laplace equation. Technical report CS-TR-4701. University of Maryland, College Park (2005)

    Google Scholar 

  19. Gumerov, N.A., Duraiswami, R.: FMM accelerated BEM for 3D Laplace and Helmholtz equations. In: Proceedings of BETEQ-7, Paris, France, pp. 79–84 (2006)

    Google Scholar 

  20. Gumerov, N.A., Duraiswami, R.: Fast multipole methods on graphics processors. J. Comput. Phys. 227(18), 8290–8313 (2008). https://doi.org/10.1016/j.jcp.2008.05.023

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The program code development was supported by the Skoltech Partnership Program. The reported study of bubble cluster dynamics was funded by the Russian Science Foundation (research project No. 18-71-00068). The FMM library was provided by Fantalgo, LLC (Maryland, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia A. Pityuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pityuk, Y.A., Gumerov, N.A., Abramova, O.A., Zarafutdinov, I.A., Akhatov, I.S. (2019). Accelerated Boundary Element Method for 3D Simulations of Bubble Cluster Dynamics in an Acoustic Field. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2019. Communications in Computer and Information Science, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-030-28163-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28163-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28162-5

  • Online ISBN: 978-3-030-28163-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics