Skip to main content

Using Eye-Tracking for Visual Attention Feedback

Part of the Lecture Notes in Information Systems and Organisation book series (LNISO,volume 32)

Abstract

In the age of big data, decision-makers are confronted with enormous amounts of information coming from various resources at high velocity. However, humans have limited cognitive capabilities such as attentional resources. Inappropriate attentional resource allocation can lead to severe losses in performance. Nowadays, the usage of eye-tracking devices brings the opportunity to design neuro-adaptive information systems that support users in better managing their limited attentional resources. In this study, we investigated the design of an attentive information dashboard which provides visual attention feedback (VAF) as live biofeedback. Later, we examined how three different VAF types assist decision makers in their visual attention allocation (VAA) performance and focused attention while conducting a data exploration task. The results show that providing an individualized VAF as live biofeedback using real-time gaze data supports users in managing their attention better than general VAFs.

Keywords

  • Attention
  • Live biofeedback
  • Information dashboard
  • Eye-Tracking

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-28144-1_29
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-28144-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36, 1165–1188.

    CrossRef  Google Scholar 

  2. Few, S. (2006). Information dashboard design: The effective visual communication of data. O’Reilly Sebastopol, CA.

    Google Scholar 

  3. Yigitbasioglu, O. M., & Velcu, O. (2012). A review of dashboards in performance management: Implications for design and research. The International Journal of Accounting Information Systems, 13, 41–59.

    CrossRef  Google Scholar 

  4. Vandenbosch, B., & Huff, S. L. (1997). Searching and scanning: How executives obtain information from executive information systems. MIS Quarterly, 21, 81.

    CrossRef  Google Scholar 

  5. Davenport, T. H., & Völpel, S. C. (2001). The rise of knowledge towards attention management. Journal of Knowledge Management, 5, 212–222.

    CrossRef  Google Scholar 

  6. Proctor, R. W., & Vu, K. L. (2006). The cognitive revolution at age 50: Has the promise of the human information-processing approach been fulfilled? International Journal of Human–Computer Interaction, 21, 253–284.

    CrossRef  Google Scholar 

  7. Simon, H. A. (1971). Designing organizations for an information-rich world. Computers, Communications, and the Public Interest, 72, 37.

    Google Scholar 

  8. Roda, C. (2011). Human attention and its implications for human–computer interaction. Human Attention in Digital Environments, 11–62.

    Google Scholar 

  9. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.

    CrossRef  Google Scholar 

  10. Bulling, A. (2016). Pervasive attentive user interfaces. IEEE Computer, 49, 94–98.

    CrossRef  Google Scholar 

  11. Vertegaal, R., & Shell, J. S. (2008). Attentive user interfaces: The surveillance and sousveillance of gaze-aware objects. In Social Science Information (pp. 275–298).

    Google Scholar 

  12. Roda, C., & Thomas, J. (2006). Attention aware systems: Theories, applications, and research agenda. Computers in Human Behavior, 22, 557–587.

    CrossRef  Google Scholar 

  13. D’Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive intelligent tutoring system. International Journal of Human-Computer Studies, 70, 377–398.

    CrossRef  Google Scholar 

  14. Allanson, J., & Fairclough, S. H. (2004). A research agenda for physiological computing. Interacting with Computers, 16, 857–878.

    CrossRef  Google Scholar 

  15. Bailey, B. P., & Konstan, J. A. (2006). On the need for attention-aware systems: Measuring effects of interruption on task performance, error rate, and affective state. Computers in Human Behavior, 22, 685–708.

    CrossRef  Google Scholar 

  16. Davenport, T. H., Völpel, S. C., & Vo, S. C. (2005). The rise of knowledge towards attention management. Journal of Knowledge Management.

    Google Scholar 

  17. Majaranta, P., & Bulling, A. (2014). Eye tracking and eye-based human–computer interaction. In Advances in physiological computing (pp. 39–65).

    Google Scholar 

  18. Dimoka, A., Davis, F. D., Pavlou, P. A., & Dennis, A. R. (2012). On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS. MIS Quarterly, 36, 679–702.

    CrossRef  Google Scholar 

  19. Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8, 441–480.

    CrossRef  Google Scholar 

  20. Riedl, R., Hevner, A., & Davis, F. (2014). Towards a NeuroIS research methodology: Intensifying the discussion on methods, tools, and measurement. Journal of the Association for Information Systems, 15, I–XXXV.

    Google Scholar 

  21. Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547.

    CrossRef  Google Scholar 

  22. Eriksen, C. W., & Yeh, Y.-Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11, 583–597.

    Google Scholar 

  23. Astor, P. J., Adam, M. T. P., Jerčić, P., Schaaff, K., & Weinhardt, C. (2014). Integrating biosignals into information systems: A NeuroIS tool for improving emotion regulation. Journal of Management Information Systems, 30, 247–278.

    CrossRef  Google Scholar 

  24. Riedl, R., Léger, P.-M. (2016). Fundamentals of NeuroIS. In Studies in Neuroscience, Psychology and Behavioral Economics (p. 127).

    Google Scholar 

  25. Lux, E., Adam, M. T. P., Dorner, V., Helming, S., Knierim, M. T., & Weinhardt, C. (2018). Self and foreign live biofeedback as a user interface design element: A review of the literature. Communications of the Association for Information Systems, 34, 555–606.

    Google Scholar 

  26. Sharma, K., Alavi, H. S., Jermann, P., & Dillenbourg, P. (2016). A gaze-based learning analytics model. In Proceedings of the Sixth International Conference on Learning Analytics & Knowledge—LAK ’16 (pp. 417–421). New York, New York, USA: ACM Press.

    Google Scholar 

  27. Sarter, N. B. (2000). The need for multisensory interfaces in support of effective attention allocation in highly dynamic event-driven domains: The case of cockpit automation. The International Journal of Aviation Psychology, 10, 231–245.

    CrossRef  Google Scholar 

  28. Otto, K., Castner, N., Geisler, D., & Kasneci, E. (2018). Development and evaluation of a gaze feedback system integrated into eyetrace. In Proceedings of the 2018 ACM symposium on eye tracking research & applications—ETRA ’18 (pp. 1–5). New York, New York, USA: ACM Press.

    Google Scholar 

  29. vom Brocke, J., Riedl, R., & Léger, P.-M. (2013). Application strategies for neuroscience in information systems design science research. Journal of Computer Information Systems, 53, 1–13.

    CrossRef  Google Scholar 

  30. Kuechler, B., & Vaishnavi, V. (2008). Theory development in design science research: Anatomy of a research project. European Journal of Information Systems, 17, 489–504.

    CrossRef  Google Scholar 

  31. Toreini, P., & Langner, M. (2019). Designing user-adaptive information dashboards: Considering limited attention and working memory. In Proceedings of European Conference on Information Systems (ECIS 2019), Stockholm, Sweden, June 08–14, 2019.

    Google Scholar 

  32. Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction design: Beyond human-computer interaction. Wiley.

    Google Scholar 

  33. Hong, W., Thong, J. Y. L., & Tam, K. Y. (2004). Does animation attract online users’ attention? The effects of flash on information search performance and perceptions. Information Systems Research, 15.

    Google Scholar 

  34. Perkhofer, L., & Lehner, O. (2019). Using gaze behavior to measure cognitive load. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, & A. B. Randolph (Eds.), Information systems and neuroscience (pp. 73–83). Cham: Springer International Publishing.

    CrossRef  Google Scholar 

  35. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70.

    CrossRef  Google Scholar 

  36. Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum impact. MIS Quarterly, 37, 337–355.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Toreini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Toreini, P., Langner, M., Maedche, A. (2020). Using Eye-Tracking for Visual Attention Feedback. In: Davis, F., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A., Fischer, T. (eds) Information Systems and Neuroscience. Lecture Notes in Information Systems and Organisation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-28144-1_29

Download citation