Skip to main content

Wavelet Transform Coherence: An Innovative Method to Investigate Social Interaction in NeuroIS

  • Conference paper
  • First Online:
Book cover Information Systems and Neuroscience

Abstract

Neuro-information system researchers called for the development of tools and methods of analysis that allows for the assessment of social interactions that considers the full range of dynamics and complexities. Recent work and progress in hyperscanning—the simultaneous recording of multiple subjects—offers the possibility to develop such methods and new research paradigms to respond to that need. Among these methods, Wavelet Transform Coherence (WTC) analysis is gaining in popularity and accessibility. However, hyperscanning methods—including WTC—remain a challenging experimental paradigm and analysis method, requiring careful preparation of data and consideration of the constraints of each neuroimaging technique. This manuscript aims to introduce the Wavelet Transform Coherence method of analysis as an innovative approach to Neuro-Information Systems research. We present practical examples and results in order to highlight the potential and complexity of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babiloni, F., & Astolfi, L. (2014). Social neuroscience and hyperscanning techniques: Past, present and future. Neuroscience and Biobehavioral Reviews, 44, 76–93.

    Article  Google Scholar 

  2. Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–289.

    Article  Google Scholar 

  3. Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M. … Fisher, R. E. (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. NeuroImage, 16(4), 1159–1164.

    Article  Google Scholar 

  4. Cui, X., Bryant, D. M., & Reiss, A. L. (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59(3), 2430–2437.

    Article  Google Scholar 

  5. Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-brain synchronization during social interaction. PLoS ONE, 5(8), e12166.

    Article  Google Scholar 

  6. Horat, S. K., Prévot, A., Richiardi, J., Herrmann, F. R., Favre, G., Merlo, M. C. G., & Missonnier, P. (2017). Differences in social decision-making between proposers and responders during the ultimatum game: An EEG study. Frontiers in Integrative Neuroscience, 11(July).

    Google Scholar 

  7. Toppi, J., Borghini, G., Petti, M., He, E. J., De Giusti, V., He, B. … Babiloni, F. (2016). Investigating cooperative behavior in ecological settings: An EEG hyperscanning study. PLOS One, 11(4), 1–26.

    Article  Google Scholar 

  8. Loos, P., Riedl, R., Müller-Putz, G. R., Vom Brocke, J., Davis, F. D., Banker, R. D & Léger, P.-M. (2010). NeuroIS: Neuroscientific approaches in the investigation and development of information systems. Business & Information Systems Engineering, 2(6), 395–401.

    Google Scholar 

  9. Riedl, R., & Léger, P.-M. (2016). Fundamentals of NeuroIS. In Studies in neuroscience, psychology and behavioral economics. Berlin, Heidelberg: Springer.

    Google Scholar 

  10. Bastarache-Roberge, M.-C., Léger, P.-M., Courtemanche, F., Sénécal, S., & Fredette, M. (2015). Measuring flow using psychophysiological data in a multiplayer gaming context. In Information systems and neuroscience (pp. 187–191). Berlin: Springer.

    Google Scholar 

  11. Dimoka, A., Benbasat, I., Davis, F. D., Dennis, A. R., Gefen, D., & Weber, B. (2012). On the use of neurophysical tools in IS research: Developing a research agenda for NeuroIS. MIS Qarterly, 36(3), 679–702.

    Article  Google Scholar 

  12. Labonté-LeMoyne, É., Léger, P. M., Resseguier, B., Bastarache-Roberge, M. C., Fredette, M., Sénécal, S., & Courtemanche, F. (2016, May). Are we in flow neurophysiological correlates of flow states in a collaborative game. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 1980–1988). ACM.

    Google Scholar 

  13. Léger, P.-M., Sénécal, S., Aubé, C., Cameron, A.-F., de Guinea, A. O., Brunelle, E., et al. (2013). The influence of group flow on group performance: A research program. Proceedings of the Gmunden Retreat on NeuroIS, 13.

    Google Scholar 

  14. Mu, Y., Cerritos, C., & Khan, F. (2018). Neural mechanisms underlying interpersonal coordination: A review of hyperscanning research. Social and Personality Psychology Compass, 12(11).

    Google Scholar 

  15. Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28(11), 1178–1193.

    Article  Google Scholar 

  16. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566.

    Article  Google Scholar 

  17. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.

    Article  Google Scholar 

  18. Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 81–98.

    Article  Google Scholar 

  19. Addison, P. S. (2017). The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance. CRC Press.

    Google Scholar 

  20. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.

    Google Scholar 

  21. Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology, 111(10), 1745–1758.

    Google Scholar 

  22. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195.

    Article  Google Scholar 

  23. Dodel, S., Cohn, J., Mersmann, J., Luu, P., Forsythe, C., & Jirsa, V. (2011). Brain signatures of team performance. In D. D. Schmorrow & C. M. Fidopiastis (Eds.), Foundations of augmented cognition. Directing the future of adaptive systems (pp. 288–297). Berlin, Heidelberg: Springer.

    Google Scholar 

  24. Stevens, R., Galloway, T., Wang, P., Berka, C., Tan, V., Wohlgemuth, T., … Buckles, R. (2013). Modeling the neurodynamic complexity of submarine navigation teams. Computational and Mathematical Organization Theory, 19(3), 346–369.

    Article  Google Scholar 

  25. Dimoka, A., Pavlou, P. A., & Davis, F. D. (2011). Research commentary—NeuroIS: The potential of cognitive neuroscience for information systems research. Information Systems Research, 22(4), 687–702.

    Article  Google Scholar 

  26. Pan, Y., Cheng, X., Zhang, Z., Li, X., & Hu, Y. (2017). Cooperation in lovers: An fNIRS-based hyperscanning study. Human Brain Mapping, 38(2), 831–841.

    Article  Google Scholar 

  27. Astolfi, L., Toppi, J., Borghini, G., Vecchiato, G., He, E. J., Roy, A. … Babiloni, F. (2012). Cortical activity and functional hyperconnectivity by simultaneous EEG recordings from interacting couples of professional pilots. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 4752–4755).

    Google Scholar 

  28. Bezerianos, A., Sun, Y., Chen, Y., Woong, K. F., Taya, F., Arico, P. … Thakor, N. (2015). Cooperation driven coherence: Brains working hard together. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015Novem (pp. 4696–4699).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Léné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Léné, P. et al. (2020). Wavelet Transform Coherence: An Innovative Method to Investigate Social Interaction in NeuroIS. In: Davis, F., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A., Fischer, T. (eds) Information Systems and Neuroscience. Lecture Notes in Information Systems and Organisation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-28144-1_16

Download citation

Publish with us

Policies and ethics