Advertisement

Affective Information Processing of Fake News: Evidence from NeuroIS

  • Bernhard LutzEmail author
  • Marc T. P. Adam
  • Stefan Feuerriegel
  • Nicolas Pröllochs
  • Dirk Neumann
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 32)

Abstract

False information such as “fake news” threatens the credibility of social media and is widely believed to affect public opinion. So far, IS literature lacks a theoretical foundation on what leads humans to classify a news item as fake. In order to shed light on this question, we performed an experiment that involved 42 subjects with both eye tracking and heart rate measurements. We find that a lower heart rate variability and a higher relative number of eye fixations per second are associated with a higher probability of fake classification. Our study contributes to IS theory by providing evidence that the decision, if a news item is real or fake, is not purely cognitive, but also involves affective information processing. Thereby, it points towards novel strategies for identifying and preventing the spread of fake news in social media.

Keywords

Affective information processing Fake news NeuroIS 

References

  1. 1.
    Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211–236.CrossRefGoogle Scholar
  2. 2.
    Wattal, S., Schuff, D., Mandviwalla, M., & Williams, C. B. (2010). Web 2.0 and politics: The 2008 US presidential election and an e-politics research agenda. MIS Quarterly, 34(4), 669–688.CrossRefGoogle Scholar
  3. 3.
    Gottfried, J., & Shearer, E. (2016). News Use Across Social Medial Platforms 2016. Pew Research Center.Google Scholar
  4. 4.
    Luca, M., & Zervas, G. (2016). Fake it till you make it: Reputation, competition, and yelp review fraud. Management Science, 62(12), 3412–3427.CrossRefGoogle Scholar
  5. 5.
    Kim, A., & Dennis, A. (2018). Says who? How news presentation format influences perceived believability and the engagement level of social media users. In Proceedings of the 51st Hawaii International Conference on System Sciences (pp. 3955–3965).Google Scholar
  6. 6.
    Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151.CrossRefGoogle Scholar
  7. 7.
    Pennycook, G., Cannon, T. D., & Rand, D. G. (2018). Prior exposure increases perceived accuracy of fake news. Journal of Experimental Psychology: General, 147(12), 1865–1880.CrossRefGoogle Scholar
  8. 8.
    LeDoux, J. E. (1989). Cognitive-emotional interactions in the brain. Cognition and Emotion, 3(4), 267–289.CrossRefGoogle Scholar
  9. 9.
    Walla, P. (2018). Affective processing guides behavior and emotions communicate feelings: Towards a guideline for the NeuroIS community. In Information Systems and Neuroscience (pp. 141–150). Berlin: Springer.Google Scholar
  10. 10.
    Dimoka, A., Davis, F. D., Gupta, A., Pavlou, P. A., Banker, R. D., Dennis, A. R., et al. (2012). On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS. MIS Quarterly, 36(3), 679–702.CrossRefGoogle Scholar
  11. 11.
    Riedl, R., Davis, F. D., & Hevner, A. R. (2014). Towards a neurois research methodology: Intensifying the discussion on methods, tools, and measurement. Journal of the Association for Information Systems, 15(10), 1–35.Google Scholar
  12. 12.
    vom Brocke, J., & Liang, T. P. (2014). Guidelines for neuroscience studies in information systems research. Journal of Management Information Systems, 30(4), 211–234.CrossRefGoogle Scholar
  13. 13.
    Pennycook, G., & Rand, D. G. (2018). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition (in press).Google Scholar
  14. 14.
    Pennycook, G., & Rand, D. G. (2019). Who falls for fake news? The roles of analytic thinking, motivated reasoning, political ideology, and bullshit receptivity. Journal of Personality (forthcoming).Google Scholar
  15. 15.
    Walla, P., & Panksepp, J. (2013). Neuroimaging helps to clarify brain affective processing without necessarily clarifying emotions. In K. N. Fountas (Ed.), Novel Frontiers of Advanced Neuroimaging (pp. 93–118). IntechOpen.Google Scholar
  16. 16.
    Festinger, L. (1962). A theory of cognitive dissonance (Vol. 2). Stanford University Press.Google Scholar
  17. 17.
    Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229–240.CrossRefGoogle Scholar
  18. 18.
    Eckberg, D. (1997). Sympathovagal balance: A critical appraisal. Circulation, 96(9), 3224–3232.CrossRefGoogle Scholar
  19. 19.
    Pumprla, J., Howorka, K., Groves, D., Chester, M., & Nolan, J. (2002). Functional assessment of heart rate variability: Physiological basis and practical applications. International Journal of Cardiology, 84(1), 1–14.CrossRefGoogle Scholar
  20. 20.
    Berghel, H. (2017). Lies, damn lies, and fake news. Computer, 50(2), 80–85.CrossRefGoogle Scholar
  21. 21.
    Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., et al. (2018). The science of fake news. Science, 359(6380), 1094–1096.CrossRefGoogle Scholar
  22. 22.
    Just, M. A., & Carpenter, P. A. (1984). Using eye fixations to study reading comprehension. New Methods in Reading Comprehension Research, 151–182.Google Scholar
  23. 23.
    Salvucci, D. D., Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (pp. 71–78).Google Scholar
  24. 24.
    Loftus, G. R. (1981). Tachistoscopic simulations of eye fixations on pictures. Journal of Experimental Psychology: Human Learning and Memory, 7(5), 369–376.Google Scholar
  25. 25.
    Poole, A., & Ball, L. J. (2006). Eye tracking in HCI and usability research. In Encyclopedia of Human Computer Interaction (pp. 211–219).Google Scholar
  26. 26.
    Léger, P. M., Sénecal, S., Courtemanche, F., de Guinea, A. O., Titah, R., Fredette, M., & Labonte-LeMoyne, É. (2014). Precision is in the eye of the beholder: Application of eye fixation-related potentials to information systems research. Journal of the Association for Information Systems, 15(10), 651–678.Google Scholar
  27. 27.
    Carpenter, P. A., & Just, M. A. (1977). Reading comprehension as eyes see it. In Cognitive processes in comprehension (pp. 109–139). New York, NY: Psychology Press.Google Scholar
  28. 28.
    Ooms, K., de Maeyer, P., & Fack, V. (2014). Study of the attentive behavior of novice and expert map users using eye tracking. Cartography and Geographic Information Science, 41(1), 37–54.CrossRefGoogle Scholar
  29. 29.
    Al-Moteri, M. O., Symmons, M., Plummer, V., & Cooper, S. (2017). Eye tracking to investigate cue processing in medical decision-making: A scoping review. Computers in Human Behavior, 66, 52–66.CrossRefGoogle Scholar
  30. 30.
    Hariharan, A., Adam, M. T. P., Lux, E., Pfeiffer, J., Dorner, V., Müller, M. B., & Weinhardt, C. (2017). Brownie: A platform for conducting NeuroIS experiments. Journal of the Association for Information Systems, 18(4), 264–296.Google Scholar
  31. 31.
    Jung, D., Adam, M. T. P., Dorner, V., & Hariharan, A. (2017). A practical guide for human lab experiments in information systems research: A tutorial with brownie. Journal of Systems and Information Technology, 19(3/4), 228–256.CrossRefGoogle Scholar
  32. 32.
    Graves, L. (2016). Boundaries not drawn: Mapping the institutional roots of the global fact-checking movement. Journalism Studies, 19(5), 613–631.CrossRefGoogle Scholar
  33. 33.
    Allen, J. J. B., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological Psychology, 74(2), 243–262.CrossRefGoogle Scholar
  34. 34.
    Rouast, P. V., Adam, M. T. P., Chiong, R. (2019). Deep learning for human affect recognition: Insights and new developments. IEEE Transactions on Affective Computing, 1–20.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bernhard Lutz
    • 1
    Email author
  • Marc T. P. Adam
    • 2
  • Stefan Feuerriegel
    • 3
  • Nicolas Pröllochs
    • 4
  • Dirk Neumann
    • 1
  1. 1.University of FreiburgFreiburgGermany
  2. 2.University of NewcastleNewcastleAustralia
  3. 3.ETH ZurichZurichSwitzerland
  4. 4.University of OxfordOxfordUK

Personalised recommendations