Skip to main content

Fixed-Point Computation of Equilibria in Biochemical Regulatory Networks

  • Conference paper
  • First Online:
Book cover Hybrid Systems Biology (HSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11705))

Included in the following conference series:

  • 324 Accesses

Abstract

The analysis of equilibria of ordinary differential equations (ODEs) that represent biochemical reaction networks is crucial in order to understand various functional properties of regulation in systems biology. In this paper, we develop a numerical algorithm to compute equilibria under the assumption that the regulatory network satisfies certain graph-theoretic conditions which lead to fixed-point iterations over an anti-monotonic function. Unlike generic approaches based on Netwon’s method, our algorithm does not require the availability of the Jacobian of the ODE vector field, which may be expensive when the dimensionality of the system is large. More important, it produces an estimation (through over-approximation) of the entire set of equilibria, with the guarantee of yielding the unique equilibrium of the ODE in the case that the returned set is a singleton. We demonstrate the applicability of our algorithm to two signaling pathways of MAPK and EGFR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeli, D., De Leenheer, P., Sontag, E.: Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. J. Math. Biol. 61(4), 581–616 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. 101(7), 1822–1827 (2004)

    Article  Google Scholar 

  3. Angeli, D., Sontag, E.D.: Multi-stability in monotone input/output systems. Syst. Control Lett. 51(3–4), 185–202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianconi, F., Baldelli, E., Ludovini, V., Crinò, L., Flacco, A., Valigi, P.: Computational model of EGFR and IGF1R pathways in lung cancer: a systems biology approach for translational oncology. Biotechnol. Adv. 30(1), 142–153 (2012)

    Article  Google Scholar 

  5. Brown, K.S., et al.: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys. Biol. 1(3), 184 (2004)

    Article  Google Scholar 

  6. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)

    Article  Google Scholar 

  7. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)

    Google Scholar 

  8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical reaction networks: a categorical and algorithmic perspective. In: LICS, pp. 485–494 (2016)

    Google Scholar 

  9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: POPL, pp. 137–150 (2016)

    Google Scholar 

  10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. Proc. Natl. Acad. Sci. (PNAS) 114(38), 10029–10034 (2017)

    Article  Google Scholar 

  11. Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving stabilization of biological systems. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 134–149. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_11

    Chapter  Google Scholar 

  12. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS, pp. 362–381 (2010)

    Google Scholar 

  13. Enciso, G., Smith, H., Sontag, E.: Nonmonotone systems decomposable into monotone systems with negative feedback. J. Differ. Equ. 224(1), 205–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. 106(16), 6453–6458 (2009)

    Article  Google Scholar 

  15. Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr., N.G.: Crossing the Hopf bifurcation in a live predator-prey system. Science 290(5495), 1358–1360 (2000)

    Article  Google Scholar 

  16. Gilbert, D., et al.: Computational methodologies for modelling, analysis and simulation of signalling networks. Brief. Bioinform. 7(4), 339–353 (2006)

    Article  Google Scholar 

  17. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31

    Chapter  Google Scholar 

  18. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267(6), 1583–1588 (2000)

    Article  Google Scholar 

  19. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5, 826 (2004)

    Article  Google Scholar 

  20. Knoll, D., Keyes, D.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164(3), 353–359 (2004)

    Article  Google Scholar 

  22. Orton, R.J., Adriaens, M.E., Gormand, A., Sturm, O.E., Kolch, W., Gilbert, D.R.: Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway. BMC Syst. Biol. 3(1), 100 (2009)

    Article  Google Scholar 

  23. Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W.: Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. 392(2), 249–261 (2005)

    Article  Google Scholar 

  24. Pappalardo, F., et al.: Computational modeling of PI3K/AKT and MAPK signaling pathways in melanoma cancer. PLoS ONE 11(3), e0152104 (2016)

    Article  Google Scholar 

  25. Radde, N.: Fixed point characterization of biological networks with complex graph topology. Bioinformatics 26(22), 2874–2880 (2010)

    Article  Google Scholar 

  26. Radde, N.: Analyzing fixed points of intracellular regulation networks with interrelated feedback topology. BMC Syst. Biol. 6(1), 57 (2012)

    Article  Google Scholar 

  27. Tyson, J.J., Novák, B.: Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem. 61(1), 219–240 (2010). pMID: 20055671

    Article  Google Scholar 

  28. Vaudry, D., Stork, P., Lazarovici, P., Eiden, L.: Signaling pathways for PC12 cell differentiation: making the right connections. Science 296(5573), 1648–1649 (2002)

    Article  Google Scholar 

  29. Volinsky, N., Kholodenko, B.N.: Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb. Perspect. Biol. 5(8), a009043 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for helpful comments. Max Tschaikowski is supported by a Lise Meitner Fellowship funded by the Austrian Science Fund (FWF) under grant number M-2393-N32 (COCO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Tschaikowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Verona, I.C., Tribastone, M., Tschaikowski, M. (2019). Fixed-Point Computation of Equilibria in Biochemical Regulatory Networks. In: Češka, M., Paoletti, N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in Computer Science(), vol 11705. Springer, Cham. https://doi.org/10.1007/978-3-030-28042-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28042-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28041-3

  • Online ISBN: 978-3-030-28042-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics