Skip to main content

RISKEE: A Risk-Tree Based Method for Assessing Risk in Cyber Security

  • Conference paper
  • First Online:
Book cover Systems, Software and Services Process Improvement (EuroSPI 2019)

Abstract

In this paper, the RISKEE method for evaluating risk in cyber security is described. RISKEE is based on attack graphs and the Diamond model combined with the FAIR method for assessing and calculating risk. It can be used to determine the risks of cyber-security attacks as a basis for decision-making. It works by forwarding estimations of attack frequencies and probabilities over an attack graph, calculating the risk at impact nodes with Monte-Carlo simulation, and propagating the resulting risk backward again. The method can be applied throughout all development phases and even be refined at runtime of a system. It involves system analysts, cyber security experts as well as domain experts for judgement of the attack frequencies, system vulnerabilities, and loss magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Vulnerability can also be judged indirectly in form of resistance strength and threat capability. These two estimations are subtracted by RISKEE to get the percentage of cases where an attack would be successful.

  2. 2.

    Probability-Proportional-Size-Sampling; A stratified sampling strategy.

References

  1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analysis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002, p. 217. ACM Press, Washington, DC (2002). https://doi.org/10.1145/586110.586140

  2. Braband, J.: Risk assessment: as simple as possible (and no simpler). In: 1st IET International Conference on System Safety, vol. 2006, pp. 285–300. IEE, London (2006). https://doi.org/10.1049/cp:20060229

  3. Braband, J.: Definition and analysis of a new risk priority number concept. In: Spitzer, C., Schmocker, U., Dang, V.N. (eds.) Probabilistic Safety Assessment and Management, pp. 2006–2011. Springer, London (2004). https://doi.org/10.1007/978-0-85729-410-4_322

    Chapter  Google Scholar 

  4. Caltagirone, S., Pendergast, A., Betz, C.: The diamond model of intrusion analysis. Technical report. Center for Cyber Intelligence Analysis and Threat Research (2013)

    Google Scholar 

  5. Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in risk analysis. Risk Anal. 19(2), 187–203 (1999)

    Google Scholar 

  6. Cox, A.L.: What’s wrong with risk matrices? Risk Anal. 28(2), 497–512 (2008). https://doi.org/10.1111/j.1539-6924.2008.01030.x

    Article  Google Scholar 

  7. Cox, A.L., Babayev, D., Huber, W.: Some limitations of qualitative risk rating systems. Risk Anal. 25(3), 651–662 (2005)

    Article  Google Scholar 

  8. Cox, A.L., Popken, D.A.: Some limitations of aggregate exposure metrics. Risk Anal. 27(2), 439–445 (2007)

    Article  Google Scholar 

  9. Dobaj, J., Schmittner, C., Krisper, M., Macher, G.: Towards quantitative integrated security and safety risk assessment. In: Proceedings of the DECSOS Workshop for SAFECOMP 2019 Conference on Computer Safety, Reliability, and Security, p. 14 (2018)

    Google Scholar 

  10. Ferrell, W.R.: Combining individual judgments. In: Wright, G. (ed.) Behavioral Decision Making, pp. 111–145. Springer, Boston (1985). https://doi.org/10.1007/978-1-4613-2391-4_6

    Chapter  Google Scholar 

  11. Franklin, B.D., Shebl, N.A., Barber, N.: Failure mode and effects analysis: too little for too much? BMJ Qual. Saf. 21(7), 607–611 (2012). https://doi.org/10.1136/bmjqs-2011-000723

    Article  Google Scholar 

  12. Freund, J.: Measuring and Managing Information Risk: A FAIR Approach. Butterworth-Heinemann, Oxford (2015)

    Google Scholar 

  13. Huang, M.S.: An approach for improvement of risk priority number in FMEA. DEStech Transactions on Computer Science and Engineering (itme), April 2017. https://doi.org/10.12783/dtcse/itme2017/8010

  14. Hubbard, D.W.: The Failure of Risk Management: Why It’s Broken and How to Fix It. Wiley, Hoboken (2009). oCLC: ocn268790760

    Google Scholar 

  15. IEC: IEC 60812: Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA) (2006)

    Google Scholar 

  16. ISO: ISO 26262 Road vehicles - Functional safety (2011)

    Google Scholar 

  17. Krisper, M., Dobaj, J., Macher, G.: Pitfalls, fallacies, and other problems in risk matrices using ordinal scales. Currently Under Review, p. 11 (2019, Submitted)

    Google Scholar 

  18. Macher, G., et al.: Integration of security in the development lifecycle of dependable automotive CPS (2017)

    Google Scholar 

  19. Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: SAHARA: a security-aware hazard and risk analysis method. In: Design, Automation & Test in Europe Conference & Exhibition (2015)

    Google Scholar 

  20. Messnarz, R., Sporer, H.: Functional safety case with FTA and FMEDA consistency approach. In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2018. CCIS, vol. 896, pp. 387–397. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97925-0_32

    Chapter  Google Scholar 

  21. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949). https://doi.org/10.1080/01621459.1949.10483310

    Article  MATH  Google Scholar 

  22. Microsoft Corporation: Threat Modeling Tool. https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool-threats

  23. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74 (2012). https://doi.org/10.1109/TDSC.2011.34

    Article  Google Scholar 

  24. RiskAMP: The beta-PERT Distribution—RiskAMP (2010). https://www.riskamp.com/beta-pert

  25. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_21

    Chapter  Google Scholar 

  26. Schneier, B.: Attack trees - modeling security threats. Dr. Dobb’s J. 24(12), 21–29 (1999). http://www.schneier.com/attacktrees.pdf

    Google Scholar 

  27. Sellappan, N., Palanikumar, K.: Modified prioritization methodology for risk priority number in failure mode and effects. Analysis 3(4), 10 (2013)

    Google Scholar 

  28. Stevens, S.S.: On the Theory of Scales of Measurement (1946)

    Article  Google Scholar 

  29. Stone, M.: The opinion pool. In: Annals of Mathematical Statistics (1961)

    Article  MathSciNet  Google Scholar 

  30. The Open Group: FAIR - ISO/IEC 27005 cookbook (c103) (2010)

    Google Scholar 

  31. The Open Group: Risk Analysis (O-RA), October 2013. https://publications.opengroup.org/c13g

  32. The Open Group: Risk Taxonomy (O-RT) 2.0, October 2013. https://publications.opengroup.org/c13k

  33. Thomas, P., Bratvold, R.B., Bickel, E.: The risk of using risk matrices. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, New Orleans, Louisiana, USA (2013). https://doi.org/10.2118/166269-MS

  34. Tidwell, T., Larson, R., Fitch, K., Hale, J.: Modeling internet attacks. In: Proceedings of the 2001 IEEE Workshop on Information Assurance and Security (2001)

    Google Scholar 

  35. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook (NUREG-0492). U.S. Nuclear Regulatory Commission (1981)

    Google Scholar 

  36. Vose, D.: Risk Analysis: A Quantitative Guide, 3rd edn. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  37. Xing, L., Amari, S.V.: Fault tree analysis. In: Misra, K.B. (ed.) Handbook of Performability Engineering, pp. 595–620. Springer, London (2008). https://doi.org/10.1007/978-1-84800-131-2_38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krisper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krisper, M., Dobaj, J., Macher, G., Schmittner, C. (2019). RISKEE: A Risk-Tree Based Method for Assessing Risk in Cyber Security. In: Walker, A., O'Connor, R., Messnarz, R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2019. Communications in Computer and Information Science, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-030-28005-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28005-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28004-8

  • Online ISBN: 978-3-030-28005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics