An Innovative Approach for Modeling Cumulative Effect of Variations in the Land Use/Land Cover Factors on Regional Persistence of the Persian Leopard

  • Arezoo SaneiEmail author
  • Mohamed Zakaria
  • Mohamad Roslan Mohamad Kasim
  • Abdullah Mohd


Cumulative effect of various land use and land cover variables that eventually affect suitability level of set/sets of habitats is a main concern in wildlife habitat conservation efforts. Even though, there have been various methodologies to identify the factors that influence probability of species persistence, survival, or occurrence in a particular habitat, no research has been conducted to assess the cumulative effects of LU/LC variations on the Persian leopard regional persistence (e.g., in several provinces, regions). Innovative formulation of the species and area specific regional indices, sub-indices, and threshold levels was carried out concerning the Persian leopard persistence in various regions of Iran (see chapter 3 for classification of regions). Regional and provincial values were assessed for the density of several variables including protected area, national park, wildlife reserve, forest, range lands, dry farming and irrigated farming, city, main and sub roads, village and human population. Principle Component Analysis and regression curve estimation techniques are the main analysis methods used in this study. Developing two types of empirically fitted models allows for adjusting the density of land use and land cover variables in a way to ensure that leopard persistence is not affected by the cumulative effect of the variables. Accordingly, current status of all provinces of Iran in relation to the cumulative effects of land use and land cover variables comparing to the corresponding threshold values together with relative conservation strategy is demonstrated in this chapter. Also, the findings support that the Persian leopard range in Iran is in the process of a major fragmentation into the northern and southern parts. Furthermore, this approach provides an insight to the managers and decision makers in order to identify wildlife friendly solutions in LU/LC and development planning. Since the leopard is an umbrella species, this model could be used to improve conservation status of the other co-existed species in leopard habitats (e.g., gray wolf, brown bear, wild goat, wild sheep, red deer, roe deer, etc.). Due to the fact that this innovative approach is on the basis of the data assessed about the Persian leopard in a regional context in Iran, the models are considered to be species and region specific. However, the same technical procedures can be modified using the area specific data for the leopard or other species in other countries and regions.


Land use Land cover Cumulative effects Persian leopard persistence Iran Land use planning Principle Component Analysis Habitat Suitability threshold LU/LC change modeling Empirically fitted models Threshold identification Panthera pardus saxicolor 



Authors would like to acknowledge Dr. Tone Novak and Peter Kozel for their comments regarding statistical techniques. We would like to acknowledge Persian Leopard Online Portal for allowing us to access the archived data. We appreciate Touran-Dokht Sarmast and Houshang Hermidas for their valuable supports during the researches.


  1. Andrén, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos, 71, 355–366.CrossRefGoogle Scholar
  2. Badaruddoza, Kumar, R., & Kaur, M. (2015). Principal component analysis of cardiovascular risk traits in three generations cohort among Indian Punjabi population. Journal of Advanced Research, 6(5), 739–746.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Boyle, J. R., Warila, J. E., Beschta, R. L., Reiter, M., Chambers, C. C., Gibson, W. P., … Mccomb, W. C. (1997). Cumulative effects of forestry practices: An example framework for evaluation from Oregon, USA. Biomass and Bioenergy, 13(4–5), 223–245.CrossRefGoogle Scholar
  4. Braeken, J., & Van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450–466.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Brown, J. D. (2009). Choosing the right type of rotation in PCA and EFA. JALT Testing and Evaluation SIG Newsletter, 13(3), 20–25.Google Scholar
  6. Bryant, F. B., & Yarnold, P. R. (1995). Principal-components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 99–136). Washington, DC: American Psychological Association.Google Scholar
  7. Chhabra, A., Geist, H., Houghton, R. A., Haberl, H., Braimoh, A. K., Vlek, P. L. G., … Lambdin, E. F. (2006). Multiple impacts of land-use/cover change. In F. Lambin & H. J. Geist (Eds.), Land-use and land-cover change: Local processes and global impacts (pp. 71–87). Berlin, Germany: Springer Publishers.CrossRefGoogle Scholar
  8. Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis. London, UK: Taylor & Francis.Google Scholar
  9. Dengler, J., Löbel, S., & Dolnik, C. (2009). Species constancy depends on plot size–A problem for vegetation classification and how it can be solved. Journal of Vegetation Science, 20(4), 754–766. Scholar
  10. Department of Environment of Iran. (2012). Status of the areas under auspice of the Department of Environment. Tehran, Iran. Unpublished document.Google Scholar
  11. Durham, C. A., & King, R. P. (2010). Principles of principal component analysis. Journal of Food Distribution Research, 41(1), 35–39.Google Scholar
  12. Eltringham, S. K. (1979). The ecology and conservation of large African mammals (p. 166). London and Basingstoke, UK: The Macmillan press.Google Scholar
  13. Estelaji, A., & Shariat Panahi, M. V. (2013). Iran human geography (p. 200). Tehran, Iran: National Geographical Organization Publication.Google Scholar
  14. Faucon, M. P., Parmentier, I., Colinet, G., Mahy, G., Luhembwe, M. N., & Meerts, P. (2011). May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restoration Ecology, 19, 333–343.CrossRefGoogle Scholar
  15. Field, A. P. (2005). Discovering statistics using SPSS (2nd ed.). London, UK: Sage.Google Scholar
  16. Gardner, R. H., & O’Neill, R. V. (1991). Pattern, process, and predictability: The use of neutral models for landscape analysis. In M. G. Turner & R. H. Gardner (Eds.), Quantitative methods in landscape ecology (pp. 289–307). New York, NY: Springer.CrossRefGoogle Scholar
  17. Glor, R. E., & Warren, D. (2010). Testing ecological explanations for biogeographic boundaries. Evolution, 65(3), 673–683.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Goff, F. G., & Mitchell, R. (1975). A comparison of species ordination results from plot and stand data. Vegetatio, 31(1), 15–22. Scholar
  19. Golub, G. H., Zhang, Z., & Zha, H. (2000). Large sparse symmetric eigenvalue problems with homogeneous linear constraints: The Lanczos process with inner–outer iterations. Linear Algebra and its Applications, 309(1–3), 289–306.CrossRefGoogle Scholar
  20. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. Gotelli, N. J., & Ellison, A. M. (2004). A primer of ecological statistics. Sunderland, MA: Sinauer Associates Publishers.Google Scholar
  22. Hatcher, L. (1994). A step-by-step approach to using the SAS system for factor analysis and structural equation modelling. Cary, NC: SAS Institute.Google Scholar
  23. Hetzel, R. D. (1996). A primer on factor analysis with comments on patterns of practice and reporting. In B. Thompson (Ed.), Advances in social science methodology (Vol. 4, pp. 175–206). Greenwich, CT: JAI Press.Google Scholar
  24. Holyoak, M. (2000). Habitat Patch Arrangement and Metapopulation Persistence of Predator and Prey. The American Naturalist, 156,4.CrossRefGoogle Scholar
  25. Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. London, UK: Sage Publication.CrossRefGoogle Scholar
  26. Iran Land Cover Map (2008). Tehran, Iran: National Geographical Organization of Iran. Unpublished Documents.Google Scholar
  27. Iran Land Use Map (2008). Tehran, Iran: National Geographical Organization of Iran. Unpublished Documents.Google Scholar
  28. Janžekovič, F., & Novak, T. (2012). PCA: A powerful method for analyse ecological niches (Doctoral dissertation). Fakulteta Za Naravoslovje in Matematiko, Univerza v Mariboru, Slovenia.Google Scholar
  29. Johnson, C. J., Boyce, M. S., Case, R. L., Cluff, H. D., Gau, R., Gunn, A., & Mulders, R. (2005). Cumulative effects of human developments on Arctic wildlife. Wildlife Monograph, 160, 1–36.Google Scholar
  30. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.CrossRefGoogle Scholar
  31. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.CrossRefGoogle Scholar
  32. Kellow, J. T. (2006). Using principal components analysis in program evaluation: Some practical considerations. Journal of MultiDisciplinary Evaluation, 3(5), 89–107.Google Scholar
  33. Kennedy, C., Wilkison, J. B., & Balch, J. (2003). Conservation thresholds for land use planners. Washington, DC: Environmental Law Institute.Google Scholar
  34. Kieffer, K. M. (1998). Orthogonal versus oblique factor rotation: A review of the literature regarding the pros and cons. Paper presented at the 27th Annual Meeting of the Mid-South Educational Research Association, New Orleans, LA. November, 1998. Retrieved from
  35. Krebs, C. J. (1989). Ecological methodology. New York, NY: Harper-Collins Publishers.Google Scholar
  36. Krzyzanowski, J., & Almuedo, P. L. (2010). Cumulative impacts of natural resource development on ecosystems and wildlife: An annotated bibliography for British Columbia. FORREX Series, 26.Google Scholar
  37. MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioural Research, 36, 611–637. Scholar
  38. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99. Scholar
  39. Manville, A. M. (2005). Bird strikes and electrocutions at power lines, communication towers, and wind turbines: State Of the art and state of the science–next steps toward mitigation. In USDA forest service general technical report PSW-GTR-191 (pp. 1051–1064). Albany, CA: Pacific South Research Station.Google Scholar
  40. McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  41. McGarigal, K., Romme, W. H., Crist, M., & Roworth, E. (2001). Cumulative effects of roads and logging on landscape structure in the San Juan Mountains, Colorado (USA). Landscape Ecology, 16(4), 327–349.CrossRefGoogle Scholar
  42. Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5, 159–168. Scholar
  43. National Geographical Organization of Iran. (2011). Guide atlas of Iranian provinces (3rd ed., p. 67). Tehran, Iran: Author.Google Scholar
  44. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw Hill.Google Scholar
  45. Nyamasyo, S. K., & Odiara Kihima, B. (2014). Changing land use patterns and their impacts on wild ungulates in Kimana wetland ecosystem, Kenya. International Journal of Biodiversity, 2014(2014), 1–10.CrossRefGoogle Scholar
  46. O’Rourke, N., & Hatcher, L. (2013). A step-by-step approach to using SAS for factor analysis and structural equation modeling (2nd ed.). Cary, NC: SAS Institute.Google Scholar
  47. Okland, R. H., Eilersten, O., & Okland, T. (1990). On the relationship between sample size and beta diversity in boreal coniferous forests. Vegetatio, 87, 187–190. Scholar
  48. Otypková, Z., & Chytrý, M. (2006). Effects of plot size on the ordination of vegetation samples. Journal of Vegetation Science, 17(4), 465–472.CrossRefGoogle Scholar
  49. Pearman, P. B. (2002). The scale of community structure: Habitat variation and avian guilds in tropical forest understory. Ecological Monographs, 72, 19–39.CrossRefGoogle Scholar
  50. Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An integrated approach. Hillsdale, NJ: Erlbaum.Google Scholar
  51. Penha, R. M. L., & Hines, J. W. (2001). Using principal component analysis modeling to monitor temperature sensors in a nuclear research reactor. In Proceedings from the maintenance and reliability conference. Knoxville, TN: University of Tennessee.Google Scholar
  52. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (p. 1235). London, UK: Cambridge University Press.Google Scholar
  53. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics (2nd ed., p. 672). Hoboken, NJ: Wiley.Google Scholar
  54. Rietveld, T., & Van Hout, R. (1993). Statistical techniques for the study of language and language behaviour. Berlin, Germany/New York, NY: Walter de Gruyter.CrossRefGoogle Scholar
  55. Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303–304.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Rissler, L. J., & Apodaca, J. J. (2007). Adding more ecology into species delimitation: Ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Systematic Biology, 56, 924–942.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Robertson, M. P., Caithness, N., & Villet, M. H. (2001). A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Diversity and Distributions, 7(1–2), 15–27.CrossRefGoogle Scholar
  58. Roques, L., & Hamel, F. (2007). Mathematical analysis of the optimal habitat configurations for species persistence. Mathematical Biosciences, 210(1), 34–59.PubMedCrossRefGoogle Scholar
  59. Roques, L. & Stoica, R.S. (2007). Species Persistence Decreases with Habitat Fragmentation: An Analysis in Periodic Stochastic Environments. Journal of Mathematical Biology, 55, 189–205.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Sanei, A. (2020). Novel classification of natural and socioeconomic characteristics for the Persian Leopard research and conservation programs. In A. Sanei (Ed.), Research and management practices for conservation of the Persian Leopard in Iran. New York, NY: Springer.Google Scholar
  61. Sanei, A., Mousavi, M., Kiabi, B. H., Masoud, M. R., Gord Mardi, E., Mohamadi, H., … Raeesi, T. (2016). Status assessment of the Persian Leopard in Iran. Cat News Special Issue, 10, 43–50.Google Scholar
  62. Sanei, A., Mousavi, M., Mousivand, M., & Zakaria, M. (2012). Assessment of the Persian leopard mortality rate in Iran. In Proceedings from UMT 11th International Annual Symposium on Sustainability Science and Management (pp. 1458–1462). Terengganu, Malaysia: Universiti Malaysia Terengganu.Google Scholar
  63. Sanei, A., Zakaria, M., Daraei, L., Besmeli, M. R., Esfandiari, F., & Veisi, H. (2020). Countrywide distribution of the Persian Leopard potential habitats in a regional basis in Iran. In A. Sanei (Ed.), Research and management practices for conservation of the Persian Leopard in Iran. New York, NY: Springer.Google Scholar
  64. Sanei, A., Zakaria, M., Mohamadi, H., Masoud, M. R., Jafari, B., Delshab, H., … Poursalem, S. (2020). Ground validation of the Persian Leopard MaxEnt potential distribution models: An evaluation to three threshold rules. In A. Sanei (Ed.), Research and management practices for conservation of the Persian Leopard in Iran. New York, NY: Springer.Google Scholar
  65. Shaukat, S. S., Rao, T. A., & Khan, M. A. (2016). Impact of sample size on principal component analysis ordination of an environmental data set: Effects on eigenstructure. Ekologia, 35(2), 173–190.CrossRefGoogle Scholar
  66. Smith, L. I. (2002). A tutorial on principal components analysis. Cornell University, USA, 51(52), 65.Google Scholar
  67. Statistical Centre of Iran. (2012). Iran statistical yearbook. Tehran, Iran: Presidency of the I.R.I., Vice Presidency for Strategic Planning and Supervision.Google Scholar
  68. Stevens, J. (1992). Applied multivariate statistics for the social sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  69. Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  70. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Upper Saddle River, NJ: Pearson Allyn & Bacon.Google Scholar
  71. Ter Braak, C. J. (1995). Non-linear methods for multivariate statistical calibration and their use in palaeoecology: A comparison of inverse (K-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometrics and Intelligent Laboratory Systems, 28(1), 165–180.CrossRefGoogle Scholar
  72. Theobald, D. M., Miller, J. R., & Hobbs, N. T. (1997). Estimating the cumulative effects of development on wildlife habitat. Landscape and Urban Planning, 39(1), 25–36.CrossRefGoogle Scholar
  73. Thompson, B. (1984). Canonical correlation analysis: Uses and 2R factor rotation 26 interpretation. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  74. Thurstone, L. L. (1947). Multiple factor analysis: A development and expansion of vectors of the mind. Chicago, IL: University of Chicago Press.Google Scholar
  75. Van der Hoek, Y., Zuckerberg, B., & Manne, L. L. (2015). Application of habitat thresholds in conservation: Considerations, limitations, and future directions. Global Ecology & Conservation, 3, 736–743.CrossRefGoogle Scholar
  76. Velicer, W. F., & Fava, J. L. (1998). The effects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 231–251. Scholar
  77. Vogt, W. P. (1993). Dictionary of statistics and methodology: A nontechnical guide for the social sciences. Newbury Park, CA: Sage.Google Scholar
  78. Walker, D. A., Forbes, B. C., Leibman, M. O., Epstein, H. E., Bhatt, U. S., Comiso, J. C., … Kaplan, J. O. (2011). Cumulative effects of rapid land-cover and land-use changes on the Yamal Peninsula, Russia. In Eurasian arctic land cover and land use in a changing climate (pp. 207–236). Amsterdam, The Netherlands: Springer.Google Scholar
  79. Youlatos, D. (2004). Multivariate analysis of organismal and habitat parameters in two neotropical primate communities. American Journal of Physical Anthropology, 123(2), 181–194.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arezoo Sanei
    • 1
    • 2
    Email author
  • Mohamed Zakaria
    • 3
  • Mohamad Roslan Mohamad Kasim
    • 3
  • Abdullah Mohd
    • 3
  1. 1.Asian Leopard Specialist SocietyTehranIran
  2. 2.Faculty of ForestryUniversiti Putra MalaysiaSelangorMalaysia
  3. 3.Faculty of ForestryUniversiti Putra MalaysiaSerdang, SelangorMalaysia

Personalised recommendations