Advertisement

Countrywide Distribution Modelling of the Persian Leopard Potential Habitats on a Regional Basis in Iran

  • Arezoo SaneiEmail author
  • Mohamed Zakaria
  • Laleh Daraei
  • Mohamad Reza Besmeli
  • Faramarz Esfandiari
  • Heidar Veisi
  • Hossein Absalan
  • Farid Fasihi
Chapter
  • 32 Downloads

Abstract

This chapter is dedicated to assessing the Persian leopard potential distribution in Iran on a regional basis that aims to address four objectives and a null hypothesis. Objectives are concerning (1) estimation of the leopard potential distribution, (2) possibility of a major fragmentation in the Persian leopard range in Iran as first mentioned by Sanei et al. (2016), (3) prediction of landscape corridors which can improve the distribution pattern connectivity and (4) the main environmental variables that contribute to assessing the predictive maps. The null hypothesis addresses the variability of permutation importance of the environmental factors in accordance with the regional variability of environmental characteristics. Due to the variability of the environmental characteristics across the country and the leopard putative range which includes almost 30 provinces out of 31, the area has been innovatively divided into five significantly dissimilar regions as discussed in the previous chapter. Subsequently, MaxEnt modelling is conducted in a regional context using a total of 17 variables including 12 natural and 5 human factors together with more than 550 well distributed leopard occurrence data in all regions. Environmental variables have been tested for possible correlation prior to the modelling procedures. Area under the curve (AUC) was used to test the model fit to the data set. Jackknife test was performed to assess the contribution of environmental variables to the MaxEnt models. Fifteen replications with test percentage of 20% were used for validation. Additional evaluation of the predictive models was conducted by assessing the potential habitat distribution maps via the expert/local knowledge of 150 individuals from all five regions. Findings support that the Persian leopard range in Iran is in the process of a major fragmentation to the northern and the southern parts. Accordingly, two landscape corridors providing vital linkages to connect leopard potential habitats in a metapopulation scale are identified. Developed predictive maps in this chapter are a basis for the researches presented in Chaps. 5, 6 and 7. Authors believe that MaxEnt modeling on a regional basis has considerably improved the accuracy of the predictive maps that eventually formed the countrywide potential distribution of the Persian leopard potential habitats in Iran.

Keywords

Persian leopard Countrywide distribution modelling Habitat fragmentation MaxEnt Potential habitat Landscape corridor Iran Panthera pardus saxicolor 

Notes

Acknowledgments

Authors would like to acknowledge provincial assessors for additional evaluation of regional models according to their local knowledge and further investigates. We particularly appreciate the North Khorasan, Golestan, West Azarbaijan and Boushehr Provincial DoE General Offices and the GEF Small Grant Program at UNDP for supporting the validation procedures specifically through the funding of the Persian Leopard Regional Workshops. We would like to express our gratitude to Dr. Jane Elith, Dr. Alaaeldin Soultan and Mike Meredith for their valuable comments on methodological aspects of the research. We thank Mr. Javad Ghaffari for collaborating in GIS and mapping. Data stored in the Persian Leopard Online Portal <www.Persian-leopard.com> was used for modelling of the regional predictive maps.

References

  1. Araújo, M. B., Whittaker, R. J., Ladle, R. J., & Erhard, M. (2005). Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14(6), 529–538.CrossRefGoogle Scholar
  2. Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854–866.CrossRefGoogle Scholar
  3. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819.Google Scholar
  4. Dalgaard, P. (2002). Statistics and computing, introductory statistics with R (p. 267). New York, NY: Springer.Google Scholar
  5. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., … Zimmermann, N. E. (2006). Novel methods improve prediction of species distributions from occurrence data. Ecography, 29, 129–151.Google Scholar
  6. Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677–697.CrossRefGoogle Scholar
  7. Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.CrossRefGoogle Scholar
  8. Franklin, J. (2010). Mapping species distribution: Spatial inference and prediction. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  9. Hanski, I., & Gaggiotti, O. E. (Eds.). (2004). Ecology, genetics, and evolution of metapopulation. Amsterdam, The Netherlands: Elsevier.Google Scholar
  10. Hanski, I., & Gilpin, M. (1991). Metapopulation dynamics: Brief history and conceptual domain. Biological Journal of the Linnean Society, 42, 3–16.CrossRefGoogle Scholar
  11. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785.CrossRefGoogle Scholar
  12. Hirzel, A., & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45, 372–1381.CrossRefGoogle Scholar
  13. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(2), 415–427.CrossRefGoogle Scholar
  14. Jenks, K. E., Songsasen, N., & Leimgruber, P. (2012). Camera traps records of dholes in Khao Ang Rue Nai Wildlife Sanctuary, Thailand. Canid News. Retrieved from http://www.canids.org/canidnews/15/Camera_trap_records_of_dholes_in_Thailand.pdf
  15. Joslin, P. (1990). Leopards in Iran. In A. Shoemaker (Ed.), International leopard studbook (pp. 13–15). Columbia, SC: Riverbanks Zoological Park.Google Scholar
  16. Jueterbock, A. (2015). R package MaxentVariableSelection: Selecting the best set of relevant environmental variables along with the optimal regularization multiplier for Maxent niche modeling. Retrieved from https://cran.r-project.org/web/packages/MaxentVariableSelection/index.html
  17. Khorozyan, I. G., & Abramov, A. V. (2007). The leopard, Panthera pardus (Carnivora, Felidae) and its resilience to human pressure in the Caucasus. Zoology in the Middle East, 41(1), 11–24.CrossRefGoogle Scholar
  18. Khorozyan, I. G., Malkhasyan, A. G., Asmaryan, S. G., & Abramov, A. V. (2010). Using geographical mapping and occupancy modeling to study the distribution of the critically endangered leopard (Panthera pardus) population in Armenia. In S. A. Cushman & F. Huettmann (Eds.), Spatial complexity, informatics, and wildlife conservation (pp. 331–347). Tokyo, Japan: Springer.CrossRefGoogle Scholar
  19. Kiabi, B. H., Dareshouri, B. F., Ghaemi, R. A., & Jahanshahi, M. (2002). Population status of the Persian leopard (Panthera pardus saxicolor Pocock, 1927) in Iran. Zoology in the Middle East, 26(1), 41–47.CrossRefGoogle Scholar
  20. Kumar, S., & Stohlgren, T. J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1(4), 94–98.Google Scholar
  21. Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490–509.CrossRefGoogle Scholar
  22. Mobargha, M. (2006). Habitat evaluation of Persian leopard (Panthera pardus saxicolor) in Turan National Park, Iran (Master’s thesis). Azad University, Tehran, Iran.Google Scholar
  23. Mondal, K., Sankar, K., & Qureshi, Q. (2013). Factors influencing the distribution of leopard in a semiarid landscape of western India. Acta Theriologica, 58(2), 179–187.CrossRefGoogle Scholar
  24. Nouhuys, S. V. (2016). Metapopulation ecology. Chichester, UK: Wiley.CrossRefGoogle Scholar
  25. Omidi, M., Kaboli, M., Karami, M., Mahini, A. S., & Kiabi, B. H. (2010). Modeling of the Persian leopard (Panthera pardus saxicolor) habitat suitability in Kolah-Ghazi National Park Using ENFA. Science and Environmental Technology, 12, 137–148.Google Scholar
  26. Pearson, R. G. (2007). Species’ distribution modeling for conservation educators and practitioners. Synthesis: American Museum of Natural History, 50, 56–89.Google Scholar
  27. Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371.CrossRefGoogle Scholar
  28. Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107.CrossRefGoogle Scholar
  29. Peterson, T. C., Willett, K. M., & Thorne, P. W. (2011). Observed changes in surface atmospheric energy over land. Geophysical Research Letters, 38(16), L16707.CrossRefGoogle Scholar
  30. Phillips, S. J. (2006). A brief tutorial on Maxent. Retrieved from http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc
  31. Phillips, S. J. (2017). A brief tutorial on Maxent. Retrieved from http://biodiversityinformatics.amnh.org/open_source/maxent/
  32. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049CrossRefGoogle Scholar
  33. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
  34. Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.CrossRefGoogle Scholar
  35. Phillips, S. J., Dudik, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings from the 21st International Conference on Machine Learning (pp. 655–662). New York, NY: ACM Press.Google Scholar
  36. Ramiadantsoa, T., Ovaskainen, O., Rybicki, J., & Hanski, I. (2015). Large-scale habitat corridors for biodiversity conservation: A forest corridor in Madagascar. PLoS One, 10(7), e0132126.CrossRefGoogle Scholar
  37. Raza, H., Ahmad, S. A., Hassan, N. A., Ararat, K., Qadir, M., & Ali, L. (2012). First photographic record of the Persian leopard in Kurdistan, northern Iraq. Cat News, 56, 34–35.Google Scholar
  38. Reese, G. C., Wilson, K. R., Hoeting, J. A., & Flather, C. H. (2005). Factors affecting species distribution predictions: A simulation modelling experiment. Ecological Applications, 15, 554–564.CrossRefGoogle Scholar
  39. Sanei, A. (2004). Assessment of leopard status in Iran (BSc thesis). Azad University, Tehran, Iran.Google Scholar
  40. Sanei, A. (2007). Assessment of leopard (Panthera pardus) status in Iran (Vol. 1, p. 298). Tehran, Iran: Sepehr Publication Center.Google Scholar
  41. Sanei, A. (2012). Mapping transboundary habitats of the Persian leopard in east Azarbaijan Province. Submitted to Provincial DoE Office of East Azarbaijan Province. Tehran, Iran: Asian Leopard Specialist Society.Google Scholar
  42. Sanei, A. (2016). Persian leopard national conservation and management action plan in Iran. Tehran, Iran: Department of Environment of Iran.Google Scholar
  43. Sanei, A. (2020). Novel classification of natural and socioeconomic characteristics for the Persian leopard research and conservation programs. In A. Sanei (Ed.), Research and management practices for conservation of the Persian leopard in Iran. New York, NY: Springer.Google Scholar
  44. Sanei, A., Masoud, M. R., & Mohamadi, H. (2020). An overview to the Persian leopard trans-boundary habitats in the Iranian sector of the Caucasus ecoregion. In A. Sanei (Ed.), Research and management practices for conservation of the Persian leopard in Iran. New York, NY: Springer.Google Scholar
  45. Sanei, A., Mousavi, M., Kiabi, B. H., Masoud, M. R., Gord Mardi, E., Mohamadi, H., … Raeesi, T. (2016). Status assessment of the Persian leopard in Iran. Cat News Special Issue, 10, 43–50.Google Scholar
  46. Sanei, A., Mousavi, M., Mousivand, M., & Zakaria, M. (2012). Assessment of the Persian leopard mortality rate in Iran. In Proceedings from UMT 11th International Annual Symposium on Sustainability Science and Management (pp. 1458–1462). Terengganu, Malaysia: Universiti Malaysia Terengganu.Google Scholar
  47. Sanei, A., & Zakaria, M. (2011a). Impacts of human disturbances on the habitat use by the Malayan panther in a fragmented secondary forest, Malaysia. Asia Life Sciences, 7, 57–72.Google Scholar
  48. Sanei, A., & Zakaria, M. (2011b). Occupancy status of Malayan leopard prey species in a fragmented forest in Selangor, Malaysia. Asia Life Sciences Supplement, 7, 41–55.Google Scholar
  49. Sanei, A., & Zakaria, M. (2011c). Distribution pattern of the Persian leopard in Iran. Asia Life Sciences Supplement, 7, 7–18.Google Scholar
  50. Sanei, A., & Zakaria, M. (2011d). Survival of the Persian leopard (Panthera pardus saxicolor) in Iran: Primary threats and human-leopard conflicts. Asia Life Sciences Supplement, 7, 31–39.Google Scholar
  51. Sanei, A., Zakaria, M., Mohamad Roslan, M. K., & Abdullah, M. (2020). An Innovative Approach for Modeling Cumulative Effect of Variations in the Land Use/Land Cover Factors on Regional Persistence of the Persian Leopard. In A. Sanei (Ed.), Research and management practices for conservation of the Persian leopard in Iran. New York, NY: Springer.Google Scholar
  52. Sillero, N. (2011). What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling, 222(8), 1343–1346.CrossRefGoogle Scholar
  53. Stith, B. M., & Kumar, N. S. (2002). Spatial distributions of tigers and prey: Mapping and the use of GIS. In K. U. Karanth & J. D. Nichols (Eds.), Monitoring tigers and their prey (pp. 51–59). Bangalore, India: Centre of Wildlife Studies.Google Scholar
  54. Stockwell, D. R. B. (2006). Improving ecological niche models by data mining large environmental datasets for surrogate models. Ecological Modelling, 192, 188–196.CrossRefGoogle Scholar
  55. Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arezoo Sanei
    • 1
    • 2
    Email author
  • Mohamed Zakaria
    • 2
  • Laleh Daraei
    • 3
  • Mohamad Reza Besmeli
    • 4
  • Faramarz Esfandiari
    • 5
  • Heidar Veisi
    • 6
  • Hossein Absalan
    • 7
  • Farid Fasihi
    • 1
  1. 1.Asian Leopard Specialist SocietyTehranIran
  2. 2.Faculty of ForestryUniversiti Putra MalaysiaSelangorMalaysia
  3. 3.(formerly) GEF Small Grant Program at UNDPTehranIran
  4. 4.Ghaenat DoE OfficeGhaenIran
  5. 5.Damghan DoE OfficeSemnanIran
  6. 6.Koredstan DoE General OfficeSanandajIran
  7. 7.Zanjan DoE General OfficeZanjanIran

Personalised recommendations