General Overview to the Research Programs in Part I

  • Arezoo SaneiEmail author


This part is consisted of 6 other chapters concerned with various research programs dedicated to the Persian leopard in Iran. The first chapter is an introduction to the historical and cultural significance of the species. Furthermore, conservation requirements of the leopard is also discussed. In the next chapter, natural and socioeconomic characteristics across the leopard range which is almost in all provinces of the country is considered for an innovative classification of the regions for further research and conservation programs. The result is used in the third chapter for a countrywide distribution modeling of the Persian leopard potential habitats on a regional basis. The findings of the third chapter provide a basis for the next research concerning ground validations of developed MAXENT potential distribution models. This chapter also provides an evaluation to three threshold rules according to the ground validation techniques. Findings elaborated in the previous chapters are used in the fifth manuscript to develop innovative species-specific models to assess cumulative effects of land use and land cover variations on the regional persistence of the leopard. In the last research chapter of this section, an overview is presented concerning the leopard potential habitats in East-Azarbaijan province and the transboundary habitats in the Iranian sector of the Caucasus Ecoregion. To be consistent and clear in all the chapters of the first part of this book, a general overview is presented here to provide definitions for the key terms and the relative ecological concepts.


Niche concept Species distribution modeling Habitat fragmentation Extinction risk Species persistence Connectivity 


  1. Akçakaya, H. R. (1992). Population viability analysis and risk assessment. In D. McCullough & R. H. Barrett (Eds.), Wildlife 2001: Populations (pp. 148–157). Bern, The Netherlands: Springer.CrossRefGoogle Scholar
  2. Akçakaya, H. R. (2000). Viability analyses with habitat-based metapopulation models. Population Ecology, 42(1), 45–53.CrossRefGoogle Scholar
  3. Anderson, S. H. (1999). Managing our wildlife resources. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  4. Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modelling. Ecology, 93, 1527–1539.PubMedCrossRefGoogle Scholar
  5. Araújo, M. B., & Williams, P. H. (2000). Selecting areas for species persistence using occurrence data. Biological Conservation, 96(3), 331–345.CrossRefGoogle Scholar
  6. Ayala, F. J. (1970). Competition, coexistence and evolution. In M. K. Hecht & W. S. Steere (Eds.), Essays in evolution and genetics in honor of Theodosis Dobzhansky (pp. 121–158). New York, NY: Appleton-Century-Crofts.CrossRefGoogle Scholar
  7. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819.Google Scholar
  8. Beier, P., & Loe, S. (1992). A checklist for evaluating impacts to wildlife movement corridors. Wildlife Social Bulletin, 20, 434–440.Google Scholar
  9. Bennett, G., & Mulongoy, K. J. (2006). Review of experience with ecological networks, corridors and buffer zones. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series, 23, 100.Google Scholar
  10. Bertuzzo, E., Suweis, S., Mari, L., Maritan, A., Rodríguez-Iturbe, I., & Rinaldo, A. (2011). Spatial effects on species persistence and implications for biodiversity. Proceedings of the National Academy of Sciences, 108(11), 4346–4351.CrossRefGoogle Scholar
  11. Bond, N. R., & Lake, P. S. (2003). Local habitat restoration in streams: Constraints on the effectiveness of restoration for stream biota. Ecological Management & Restoration, 4(3), 193–198.CrossRefGoogle Scholar
  12. Brown, J. H. (1971). Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105(945), 467–478.CrossRefGoogle Scholar
  13. Colwell, R. K., & Rangel, T. F. (2009). Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences, 106(2), 19651–19658.CrossRefGoogle Scholar
  14. Cushman, S. A., & Landguth, E. L. (2012). Multi-taxa population connectivity in the northern Rocky Mountains. Ecological Modelling, 231, 101–112.CrossRefGoogle Scholar
  15. De Jong, W. (2010). Forest rehabilitation and its implication for forest transition theory. Biotropica, 42(1), 3–9.CrossRefGoogle Scholar
  16. Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677–697.CrossRefGoogle Scholar
  17. Elton, C. S. (1927). Animal ecology. London, UK: Sidgwick and Jackson.Google Scholar
  18. Elton, C. S. (2001). Animal ecology. Chicago, IL: University of Chicago Press.Google Scholar
  19. Elton, C. S., & Miller, R. S. (1954). The ecological survey of animal communities: With a practical system of classifying habitats by structural characters. Journal of Ecology, 42(2), 460–496.CrossRefGoogle Scholar
  20. Fahrig, L. (2002). Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications, 12(2), 346–353.Google Scholar
  21. Flather, C. H., Hayward, G. D., Beissinger, S. R., & Stephens, P. A. (2011). Minimum viable populations: Is there a ‘Magic Number’ for conservation practitioners? Trends in Ecology and Evolution, 26, 307–316.PubMedCrossRefGoogle Scholar
  22. Franklin, I. R. (1980). Evolutionary changes in small populations. In M. E. Soulé & B. M. Wilcox (Eds.), Conservation biology an evolutionary-ecological perspective (pp. 135–149). Sunderland, MA: Sinauer.Google Scholar
  23. Franklin, J. (2010). Mapping species distribution: Spatial inference and prediction. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  24. Gerber, B. D., Karpanty, S. M., & Randrianantenaina, J. (2012). The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx, 46, 414–422.CrossRefGoogle Scholar
  25. Grinnell, J. (1904). The origin and distribution of the chestnut-backed chickadee. The Auk, 21(3), 364–378.CrossRefGoogle Scholar
  26. Grinnell, J. (1917). The niche-relationships of the California thrasher. The Auk, 34(4), 427–433.CrossRefGoogle Scholar
  27. Grinnell, J. (1924). Geography and evolution. Ecology, 5(3), 225–229.CrossRefGoogle Scholar
  28. Guisan, A., & Zimmermann, E. N. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2), 147–186.CrossRefGoogle Scholar
  29. Hanski, I., & Gilpin, M. (1991). Metapopulation dynamics: Brief history and conceptual domain. Biological Journal of the Linnean Society, 42, 3–16.CrossRefGoogle Scholar
  30. Harmon, L. J., & Braude, S. (2010). Conservation of small populations: Effective population size, inbreeding, and the 50/500 rule. In S. Braude & S. B. Low (Eds.), An introduction to methods and models in ecology and conservation biology (pp. 125–138). Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  31. Harris, L. D. (1984). The fragmented forest: Island biogeography theory and preservations of biotic diversity. Chicago, IL: University Chicago Press.CrossRefGoogle Scholar
  32. Hirzel, A., & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45, 372–1381.CrossRefGoogle Scholar
  33. Holden, M. (2008). The effect of habitat fragmentation on population persistence in spatially heterogeneous landscapes. Davis, CA: Department of Mathematics, University of California. Retrieved from.
  34. Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences, 106, 19659–19665.CrossRefGoogle Scholar
  35. Holyoak, M. (2000). Habitat patch arrangement and metapopulation persistence of predator and prey. The American Naturalist, 156, 4.CrossRefGoogle Scholar
  36. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(2), 415–427.CrossRefGoogle Scholar
  37. Hutchinson, G. E. (1965). Ecological theatre and the evolutionary play. New Haven, CT: Yale University Press.Google Scholar
  38. Hutchinson, G. E. (1978). An introduction to population biology. New Haven, CT: Yale University Press.Google Scholar
  39. IUCN. (2007). Connectivity conservation: International experience in planning, establishment and management of biodiversity corridors. Bangkok, Thailand: IUCN Regional Protected Areas Programme.Google Scholar
  40. Johnson, K. N., Agee, J., Beschta, R., Dale, V., Hardesty, L., Long, J., … Trosper, R. (1999). Sustaining the people’s lands: Recommendations for stewardship of the national forests and grasslands into the next century. Journal of Forestry, 97(5), 6–12.Google Scholar
  41. Johnstone, C., Reina, R., & Lill, A. (2010). Impact of anthropogenic habitat fragmentation on population health in a small, carnivorous marsupial. Journal of Mammalogy, 91, 1332–1341.CrossRefGoogle Scholar
  42. Khatibi, M., & Sheikholeslami, R. (2016). Ecological niche theory: A brief review of Khorasan provinces, Iran. International Journal of Agriculture and Crop Sciences, 7(6), 297–303.Google Scholar
  43. Knaepkens, G., Bervoets, L., Verheyen, E., & Eens, M. (2004). Relationship between population size and genetic diversity in endangered populations of the European bullhead (Cottus gobio): Implications for conservation. Biological Conservation, 115(3), 403–410.CrossRefGoogle Scholar
  44. Lacy, R. C. (2019). Lessons from 30 years of population viability analysis of wildlife populations. Zoo biology, 38: 67–77.Google Scholar
  45. LeBuhn, G., & Miller, Th. E. (2014). Population viability. Retrieved from
  46. Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240.CrossRefGoogle Scholar
  47. Levins, R. (1970). Extinctions. Some mathematical questions in biology: Lectures on mathematics in the life sciences. American Mathematical Society, 2, 77–107.Google Scholar
  48. Lockwood, M., Worboys, G. L., & Kothari, A. (2006). Managing protected areas: A global guide. London, UK: Earthscan.Google Scholar
  49. McEuen, A. (1993). The wildlife corridor controversy: A review. Endangered Species Update, 10, 11–12.Google Scholar
  50. Meffe, G. K., & Carroll, C. R. (1997). Principles of conservation biology (2nd ed., p. 729). Sunderland, MA: Sinauer and Associates Inc.Google Scholar
  51. Mesdaghi, M. (2012). Statistical and regression methods (1st ed.). Mashhad, Iran: Imam Reza International University Press.Google Scholar
  52. Michalski, F., & Peres, C. A. (2005). Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biological Conservation, 124, 383–396.CrossRefGoogle Scholar
  53. Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490–509.CrossRefGoogle Scholar
  54. Moilanen, A., Franco, A. M., Early, R. I., Fox, R., Wintle, B., & Thomas, C. D. (2005). Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proceedings of the Royal Society of London B: Biological Sciences, 272(1575), 1885–1891.Google Scholar
  55. Newmark, W. D. (1987). A land-bridge island perspective on mammalian extinctions in western north American parks. Nature, 325(6103), 430–432.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Niebuhr, B. B., Wosniack, M. E., Santos, M. C., Raposo, E. P., Viswanathan, G. M., Da Luz, M. G., & Pie, M. R. (2015). Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation. Scientific Reports, 5, 11898.Google Scholar
  57. Noss, R. F., & Cooperrider, A. Y. (1994). Saving nature’s legacy: Protecting and restoring biodiversity. Washington, DC: Defenders of Wildlife and Island Press.Google Scholar
  58. Nouhuys, S. V. (2016). Metapopulation ecology. Chichester, UK: Wiley.CrossRefGoogle Scholar
  59. Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371.CrossRefGoogle Scholar
  60. Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107.CrossRefGoogle Scholar
  61. Phillips, S. J., Dudik, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings from the 21st International Conference on Machine Learning (pp. 655–662). New York, NY: ACM Press.Google Scholar
  62. Raj, K. (2010). Ecological niche theory. Journal of Human Ecology, 32(3), 175–182.CrossRefGoogle Scholar
  63. Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D., & Frankham, R. (2003). Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 113(1), 23–34.CrossRefGoogle Scholar
  64. Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology, 5(1), 18–32.CrossRefGoogle Scholar
  65. Schoener, T. W. (2009). The ecological niche. In S. A. Levin (Ed.), The Princeton guide to ecology. Princeton, NJ: Princeton University Press.Google Scholar
  66. Shaffer, M. L. (1981). Minimum population sizes for species conservation. Bioscience, 31, 131–134.CrossRefGoogle Scholar
  67. Sillero, N. (2011). What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling, 222(8), 1343–1346.CrossRefGoogle Scholar
  68. Soberόn, J., & Peterson, A. T. (2011). Ecological niche shifts and environmental space anisotropy: A cautionary note. Revista Mexicana de Biodiversidad, 82, 1348–1355.Google Scholar
  69. Stockwell, D. R. B. (2006). Improving ecological niche models by data mining large environmental datasets for surrogate models. Ecological Modelling, 192, 188–196.CrossRefGoogle Scholar
  70. Temple, S. A. (1986). The problem of avian extinctions. Current Ornithology, 3, 453.CrossRefGoogle Scholar
  71. Theobald, D. M., Miller, J. R., & Hobbs, N. T. (1997). Estimating the cumulative effects of development on wildlife habitat. Landscape and Urban Planning, 39(1), 25–36.CrossRefGoogle Scholar
  72. Turner, I.M. (1996) Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology, 33, 200– 209.Google Scholar
  73. Turner, I. M., & Corlett, R. T. (1996). The conservation value of small, isolated fragments of lowland tropical rain forest. Trends in Ecology and Evolution, 11, 330–333.PubMedCrossRefGoogle Scholar
  74. Vold, T., & Buffett, D. A. (Eds.). (2008). Ecological concepts, principles and applications to conservation (p. 36). Biodiversity BC. Retrieved from www.biodiversitybc
  75. Watson, M. L. (2005). The effects of roads on wildlife and habitats. Santa Fe, NM: Department of Game and Fish, Conservation Services Division.Google Scholar
  76. Wilcox, B. A., & Murphy, D. D. (1985). Conservation strategy: The effects of fragmentation on extinction. The American Naturalist, 125(6), 879–887.CrossRefGoogle Scholar
  77. With, K. A. (1997). The application of neutral landscape models in conservation biology. Conservation Biology, 11(5), 1069–1080.CrossRefGoogle Scholar
  78. With, K. A., & King, A. W. (1999). Extinction thresholds for species in fractal landscapes. Conservation Biology, 13(2), 314–326.CrossRefGoogle Scholar
  79. Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt Model v3. 3.3 E-tutorial (ArcGIS v10). Fort Collins, CO: Colorado State University.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Asian Leopard Specialist SocietyTehranIran
  2. 2.Faculty of ForestryUniversiti Putra MalaysiaSelangorMalaysia

Personalised recommendations