General Overview to the Research Programs in Part I
- 34 Downloads
Abstract
This part is consisted of 6 other chapters concerned with various research programs dedicated to the Persian leopard in Iran. The first chapter is an introduction to the historical and cultural significance of the species. Furthermore, conservation requirements of the leopard is also discussed. In the next chapter, natural and socioeconomic characteristics across the leopard range which is almost in all provinces of the country is considered for an innovative classification of the regions for further research and conservation programs. The result is used in the third chapter for a countrywide distribution modeling of the Persian leopard potential habitats on a regional basis. The findings of the third chapter provide a basis for the next research concerning ground validations of developed MAXENT potential distribution models. This chapter also provides an evaluation to three threshold rules according to the ground validation techniques. Findings elaborated in the previous chapters are used in the fifth manuscript to develop innovative species-specific models to assess cumulative effects of land use and land cover variations on the regional persistence of the leopard. In the last research chapter of this section, an overview is presented concerning the leopard potential habitats in East-Azarbaijan province and the transboundary habitats in the Iranian sector of the Caucasus Ecoregion. To be consistent and clear in all the chapters of the first part of this book, a general overview is presented here to provide definitions for the key terms and the relative ecological concepts.
Keywords
Niche concept Species distribution modeling Habitat fragmentation Extinction risk Species persistence ConnectivityReferences
- Akçakaya, H. R. (1992). Population viability analysis and risk assessment. In D. McCullough & R. H. Barrett (Eds.), Wildlife 2001: Populations (pp. 148–157). Bern, The Netherlands: Springer.CrossRefGoogle Scholar
- Akçakaya, H. R. (2000). Viability analyses with habitat-based metapopulation models. Population Ecology, 42(1), 45–53.CrossRefGoogle Scholar
- Anderson, S. H. (1999). Managing our wildlife resources. Upper Saddle River, NJ: Prentice Hall.Google Scholar
- Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modelling. Ecology, 93, 1527–1539.PubMedCrossRefGoogle Scholar
- Araújo, M. B., & Williams, P. H. (2000). Selecting areas for species persistence using occurrence data. Biological Conservation, 96(3), 331–345.CrossRefGoogle Scholar
- Ayala, F. J. (1970). Competition, coexistence and evolution. In M. K. Hecht & W. S. Steere (Eds.), Essays in evolution and genetics in honor of Theodosis Dobzhansky (pp. 121–158). New York, NY: Appleton-Century-Crofts.CrossRefGoogle Scholar
- Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819.Google Scholar
- Beier, P., & Loe, S. (1992). A checklist for evaluating impacts to wildlife movement corridors. Wildlife Social Bulletin, 20, 434–440.Google Scholar
- Bennett, G., & Mulongoy, K. J. (2006). Review of experience with ecological networks, corridors and buffer zones. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series, 23, 100.Google Scholar
- Bertuzzo, E., Suweis, S., Mari, L., Maritan, A., Rodríguez-Iturbe, I., & Rinaldo, A. (2011). Spatial effects on species persistence and implications for biodiversity. Proceedings of the National Academy of Sciences, 108(11), 4346–4351.CrossRefGoogle Scholar
- Bond, N. R., & Lake, P. S. (2003). Local habitat restoration in streams: Constraints on the effectiveness of restoration for stream biota. Ecological Management & Restoration, 4(3), 193–198.CrossRefGoogle Scholar
- Brown, J. H. (1971). Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105(945), 467–478.CrossRefGoogle Scholar
- Colwell, R. K., & Rangel, T. F. (2009). Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences, 106(2), 19651–19658.CrossRefGoogle Scholar
- Cushman, S. A., & Landguth, E. L. (2012). Multi-taxa population connectivity in the northern Rocky Mountains. Ecological Modelling, 231, 101–112.CrossRefGoogle Scholar
- De Jong, W. (2010). Forest rehabilitation and its implication for forest transition theory. Biotropica, 42(1), 3–9.CrossRefGoogle Scholar
- Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677–697.CrossRefGoogle Scholar
- Elton, C. S. (1927). Animal ecology. London, UK: Sidgwick and Jackson.Google Scholar
- Elton, C. S. (2001). Animal ecology. Chicago, IL: University of Chicago Press.Google Scholar
- Elton, C. S., & Miller, R. S. (1954). The ecological survey of animal communities: With a practical system of classifying habitats by structural characters. Journal of Ecology, 42(2), 460–496.CrossRefGoogle Scholar
- Fahrig, L. (2002). Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications, 12(2), 346–353.Google Scholar
- Flather, C. H., Hayward, G. D., Beissinger, S. R., & Stephens, P. A. (2011). Minimum viable populations: Is there a ‘Magic Number’ for conservation practitioners? Trends in Ecology and Evolution, 26, 307–316.PubMedCrossRefGoogle Scholar
- Franklin, I. R. (1980). Evolutionary changes in small populations. In M. E. Soulé & B. M. Wilcox (Eds.), Conservation biology an evolutionary-ecological perspective (pp. 135–149). Sunderland, MA: Sinauer.Google Scholar
- Franklin, J. (2010). Mapping species distribution: Spatial inference and prediction. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
- Gerber, B. D., Karpanty, S. M., & Randrianantenaina, J. (2012). The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx, 46, 414–422.CrossRefGoogle Scholar
- Grinnell, J. (1904). The origin and distribution of the chestnut-backed chickadee. The Auk, 21(3), 364–378.CrossRefGoogle Scholar
- Grinnell, J. (1917). The niche-relationships of the California thrasher. The Auk, 34(4), 427–433.CrossRefGoogle Scholar
- Grinnell, J. (1924). Geography and evolution. Ecology, 5(3), 225–229.CrossRefGoogle Scholar
- Guisan, A., & Zimmermann, E. N. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2), 147–186.CrossRefGoogle Scholar
- Hanski, I., & Gilpin, M. (1991). Metapopulation dynamics: Brief history and conceptual domain. Biological Journal of the Linnean Society, 42, 3–16.CrossRefGoogle Scholar
- Harmon, L. J., & Braude, S. (2010). Conservation of small populations: Effective population size, inbreeding, and the 50/500 rule. In S. Braude & S. B. Low (Eds.), An introduction to methods and models in ecology and conservation biology (pp. 125–138). Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
- Harris, L. D. (1984). The fragmented forest: Island biogeography theory and preservations of biotic diversity. Chicago, IL: University Chicago Press.CrossRefGoogle Scholar
- Hirzel, A., & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45, 372–1381.CrossRefGoogle Scholar
- Holden, M. (2008). The effect of habitat fragmentation on population persistence in spatially heterogeneous landscapes. Davis, CA: Department of Mathematics, University of California. Retrieved from. https://www.math.ucdavis.edu/files/6413/5795/0380/HoldenThesis.pdf
- Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences, 106, 19659–19665.CrossRefGoogle Scholar
- Holyoak, M. (2000). Habitat patch arrangement and metapopulation persistence of predator and prey. The American Naturalist, 156, 4.CrossRefGoogle Scholar
- Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(2), 415–427.CrossRefGoogle Scholar
- Hutchinson, G. E. (1965). Ecological theatre and the evolutionary play. New Haven, CT: Yale University Press.Google Scholar
- Hutchinson, G. E. (1978). An introduction to population biology. New Haven, CT: Yale University Press.Google Scholar
- IUCN. (2007). Connectivity conservation: International experience in planning, establishment and management of biodiversity corridors. Bangkok, Thailand: IUCN Regional Protected Areas Programme.Google Scholar
- Johnson, K. N., Agee, J., Beschta, R., Dale, V., Hardesty, L., Long, J., … Trosper, R. (1999). Sustaining the people’s lands: Recommendations for stewardship of the national forests and grasslands into the next century. Journal of Forestry, 97(5), 6–12.Google Scholar
- Johnstone, C., Reina, R., & Lill, A. (2010). Impact of anthropogenic habitat fragmentation on population health in a small, carnivorous marsupial. Journal of Mammalogy, 91, 1332–1341.CrossRefGoogle Scholar
- Khatibi, M., & Sheikholeslami, R. (2016). Ecological niche theory: A brief review of Khorasan provinces, Iran. International Journal of Agriculture and Crop Sciences, 7(6), 297–303.Google Scholar
- Knaepkens, G., Bervoets, L., Verheyen, E., & Eens, M. (2004). Relationship between population size and genetic diversity in endangered populations of the European bullhead (Cottus gobio): Implications for conservation. Biological Conservation, 115(3), 403–410.CrossRefGoogle Scholar
- Lacy, R. C. (2019). Lessons from 30 years of population viability analysis of wildlife populations. Zoo biology, 38: 67–77.Google Scholar
- LeBuhn, G., & Miller, Th. E. (2014). Population viability. Retrieved from http://accessscience.com/content/757600
- Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240.CrossRefGoogle Scholar
- Levins, R. (1970). Extinctions. Some mathematical questions in biology: Lectures on mathematics in the life sciences. American Mathematical Society, 2, 77–107.Google Scholar
- Lockwood, M., Worboys, G. L., & Kothari, A. (2006). Managing protected areas: A global guide. London, UK: Earthscan.Google Scholar
- McEuen, A. (1993). The wildlife corridor controversy: A review. Endangered Species Update, 10, 11–12.Google Scholar
- Meffe, G. K., & Carroll, C. R. (1997). Principles of conservation biology (2nd ed., p. 729). Sunderland, MA: Sinauer and Associates Inc.Google Scholar
- Mesdaghi, M. (2012). Statistical and regression methods (1st ed.). Mashhad, Iran: Imam Reza International University Press.Google Scholar
- Michalski, F., & Peres, C. A. (2005). Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biological Conservation, 124, 383–396.CrossRefGoogle Scholar
- Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490–509.CrossRefGoogle Scholar
- Moilanen, A., Franco, A. M., Early, R. I., Fox, R., Wintle, B., & Thomas, C. D. (2005). Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proceedings of the Royal Society of London B: Biological Sciences, 272(1575), 1885–1891.Google Scholar
- Newmark, W. D. (1987). A land-bridge island perspective on mammalian extinctions in western north American parks. Nature, 325(6103), 430–432.PubMedCrossRefPubMedCentralGoogle Scholar
- Niebuhr, B. B., Wosniack, M. E., Santos, M. C., Raposo, E. P., Viswanathan, G. M., Da Luz, M. G., & Pie, M. R. (2015). Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation. Scientific Reports, 5, 11898.Google Scholar
- Noss, R. F., & Cooperrider, A. Y. (1994). Saving nature’s legacy: Protecting and restoring biodiversity. Washington, DC: Defenders of Wildlife and Island Press.Google Scholar
- Nouhuys, S. V. (2016). Metapopulation ecology. Chichester, UK: Wiley.CrossRefGoogle Scholar
- Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371.CrossRefGoogle Scholar
- Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107.CrossRefGoogle Scholar
- Phillips, S. J., Dudik, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings from the 21st International Conference on Machine Learning (pp. 655–662). New York, NY: ACM Press.Google Scholar
- Raj, K. (2010). Ecological niche theory. Journal of Human Ecology, 32(3), 175–182.CrossRefGoogle Scholar
- Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D., & Frankham, R. (2003). Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 113(1), 23–34.CrossRefGoogle Scholar
- Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology, 5(1), 18–32.CrossRefGoogle Scholar
- Schoener, T. W. (2009). The ecological niche. In S. A. Levin (Ed.), The Princeton guide to ecology. Princeton, NJ: Princeton University Press.Google Scholar
- Shaffer, M. L. (1981). Minimum population sizes for species conservation. Bioscience, 31, 131–134.CrossRefGoogle Scholar
- Sillero, N. (2011). What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling, 222(8), 1343–1346.CrossRefGoogle Scholar
- Soberόn, J., & Peterson, A. T. (2011). Ecological niche shifts and environmental space anisotropy: A cautionary note. Revista Mexicana de Biodiversidad, 82, 1348–1355.Google Scholar
- Stockwell, D. R. B. (2006). Improving ecological niche models by data mining large environmental datasets for surrogate models. Ecological Modelling, 192, 188–196.CrossRefGoogle Scholar
- Temple, S. A. (1986). The problem of avian extinctions. Current Ornithology, 3, 453.CrossRefGoogle Scholar
- Theobald, D. M., Miller, J. R., & Hobbs, N. T. (1997). Estimating the cumulative effects of development on wildlife habitat. Landscape and Urban Planning, 39(1), 25–36.CrossRefGoogle Scholar
- Turner, I.M. (1996) Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology, 33, 200– 209.Google Scholar
- Turner, I. M., & Corlett, R. T. (1996). The conservation value of small, isolated fragments of lowland tropical rain forest. Trends in Ecology and Evolution, 11, 330–333.PubMedCrossRefGoogle Scholar
- Vold, T., & Buffett, D. A. (Eds.). (2008). Ecological concepts, principles and applications to conservation (p. 36). Biodiversity BC. Retrieved from www.biodiversitybc
- Watson, M. L. (2005). The effects of roads on wildlife and habitats. Santa Fe, NM: Department of Game and Fish, Conservation Services Division.Google Scholar
- Wilcox, B. A., & Murphy, D. D. (1985). Conservation strategy: The effects of fragmentation on extinction. The American Naturalist, 125(6), 879–887.CrossRefGoogle Scholar
- With, K. A. (1997). The application of neutral landscape models in conservation biology. Conservation Biology, 11(5), 1069–1080.CrossRefGoogle Scholar
- With, K. A., & King, A. W. (1999). Extinction thresholds for species in fractal landscapes. Conservation Biology, 13(2), 314–326.CrossRefGoogle Scholar
- Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt Model v3. 3.3 E-tutorial (ArcGIS v10). Fort Collins, CO: Colorado State University.Google Scholar