Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5(1), 135–146 (2017)
CrossRef
Google Scholar
Chollampatt, S., Ng, H.T.: A multilayer convolutional encoder-decoder neural network for grammatical error correction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Google Scholar
Dale, R.: Checking in on grammar checking. Nat. Lang. Eng. 22(03), 491–495 (2016)
CrossRef
Google Scholar
Darǵis, R., Auziņa, I., Levāne-Petrova, K.: The use of text alignment in semi-automatic error analysis: use case in the development of the corpus of the Latvian language learners. In: Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC), pp. 4111–4115 (2018)
Google Scholar
Deksne, D., Skadina, I.: Error-annotated corpus of Latvian. In: Utka, A., et al. (eds.) Human Language Technologies - The Baltic Perspective. Proceedings of the sixth International Conference Baltic HLT 2014, FAIA, vol. 268, pp. 163–166. IOS Press, Amsterdam (2014)
Google Scholar
Deksne, D.: A new phase in the development of a grammar checker for Latvian. In: Skadiņa, I., Rozis, R. (eds.) Human Language Technologies - The Baltic Perspective. Proceedings of the seventh International Conference Baltic HLT 2016, FAIA, vol. 289, pp. 147–152. IOS Press, Amsterdam (2016)
Google Scholar
Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Ge, T., Wei, F., Zhou, M.: Fluency boost learning and inference for neural grammatical error correction. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1055–1065 (2018)
Google Scholar
Ghosh, S., Kristensson, P.O.: Neural networks for text correction and completion in keyboard decoding. arXiv preprint arXiv:1709.06429 (2017)
Han, N.R., Chodorow, M., Leacock, C.: Detecting errors in English article usage by non-native speakers. Nat. Lang. Eng. 12(2), 115–129 (2006)
CrossRef
Google Scholar
Junczys-Dowmunt, M., Grundkiewicz, R., Guha, S., Heafield, K.: Approaching neural grammatical error correction as a low-resource machine translation task. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 595–606 (2018)
Google Scholar
Kaneko, M., Sakaizawa, Y., Komachi, M.: Grammatical error detection using error-and grammaticality-specific word embeddings. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 40–48 (2017)
Google Scholar
Liu, Z.R., Liu, Y.: Exploiting unlabeled data for neural grammatical error detection. J. Comput. Sci. Technol. 32(4), 758–767 (2017)
MathSciNet
CrossRef
Google Scholar
Ng, H.T., Wu, S.M., Briscoe, T., Hadiwinoto, C., Susanto, R.H., Bryant, C.: The CoNLL-2014 shared task on grammatical error correction. In: CoNLL Shared Task, pp. 1–14 (2014)
Google Scholar
Rei, M., Felice, M., Yuan, Z., Briscoe, T.: Artificial error generation with machine translation and syntactic patterns. In: Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pp. 287–292. ACL, Copenhagen (2017)
Google Scholar
Rei, M., Yannakoudakis., H.: Compositional sequence labeling models for error detection in learner writing. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1181–1191. ACL, Berlin (2016)
Google Scholar
Rei, M., Yannakoudakis, H.: Auxiliary objectives for neural error detection models. In: Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pp. 33–43. ACL, Copenhagen (2017)
Google Scholar
Sakaguchi, K., Napoles, C., Tetreault, J.: GEC into the future: where are we going and how do we get there? In: Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pp. 180–187. ACL, Copenhagen (2017)
Google Scholar
Schmaltz, A., Kim, Y., Rush, A. and Shieber, S.: Adapting sequence models for sentence correction. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2807–2813. ACL, Copenhagen (2017)
Google Scholar
Sun, C., Jin, X., Lin, L., Zhao, Y., Wang, X.: Convolutional neural networks for correcting English article errors. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) National CCF Conference on Natural Language Processing and Chinese Computing. LNCS, vol. 9362, pp. 102–110. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25207-0_9
CrossRef
Google Scholar
Šķilters, J., Zariņa, L., Žilinskaitė-Šinkūnienė, E., Skolmeistere, V.: Acceptability rating of ungrammatical colloquial Latvian: how native speakers judge different error types. Baltic J. Mod. Comput. 6(2), 173–194 (2018)
CrossRef
Google Scholar
Tiedemann, J.: News from OPUS - a collection of multilingual parallel corpora with tools and interfaces. In: Nicolov, N., Angelova, G., Mitkov, R. (eds.) Recent Advances in Natural Language Processing V. Selected papers from RANLP 2007, pp. 237–248. John Benjamins Publishing Company, Amsterdam/Philadelphia (2009)
Google Scholar
Znotiņa, I.: Computer-aided error analysis for researching baltic interlanguage. Rural Environment, Education, Personality (REEP). In: Proceedings of the tenth International Scientific Conference, pp. 238–244. LLU, Jelgava (2017)
Google Scholar