Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638–1649. Association for Computational Linguistics (2018)
Google Scholar
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
CrossRef
Google Scholar
Che, W., Liu, Y., Wang, Y., Zheng, B., Liu, T.: Towards better UD parsing: deep contextualized word embeddings, ensemble, and treebank concatenation. In: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pp. 55–64. Association for Computational Linguistics (2018)
Google Scholar
Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. CoRR (2014)
Google Scholar
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)
Google Scholar
Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing. CoRR abs/1611.01734 (2016)
Google Scholar
Fares, M., Oepen, S., Øvrelid, L., Björne, J., Johansson, R.: The 2018 shared task on extrinsic parser evaluation: on the downstream utility of English Universal Dependency Parsers. In: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pp. 22–33. Association for Computational Linguistics (2018)
Google Scholar
Gesmundo, A., Henderson, J., Merlo, P., Titov, I.: A latent variable model of synchronous syntactic-semantic parsing for multiple languages. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task, Boulder, pp. 37–42. Association for Computational Linguistics, June 2009
Google Scholar
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
CrossRef
Google Scholar
Hajič, J.: Building a syntactically annotated corpus: the Prague dependency treebank. In: Hajičová, E. (ed.) Issues of Valency and Meaning. Studies in Honour of Jarmila Panevová, pp. 106–132. Karolinum, Charles University Press, Prague (1998)
Google Scholar
Hajič, J.: Disambiguation of Rich Inflection: Computational Morphology of Czech. Karolinum Press, Prague (2004)
Google Scholar
Hajič, J., Hlaváčová, J.: MorfFlex CZ 161115 (2016). LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL), aculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11234/1-1834
Hajič, J., et al.: Prague dependency treebank 3.5 (2018). LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11234/1-2621
Hnátková, M., Křen, M., Procházka, P., Skoumalová, H.: The SYN-series corpora of written Czech. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation, LREC 2014, Reykjavik, Iceland, pp. 160–164. European Language Resources Association (ELRA), May 2014
Google Scholar
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
CrossRef
Google Scholar
Holan, T., Žabokrtský, Z.: Combining Czech dependency parsers. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 95–102. Springer, Heidelberg (2006). https://doi.org/10.1007/11846406_12
CrossRef
Google Scholar
Kanerva, J., Ginter, F., Miekka, N., Leino, A., Salakoski, T.: Turku neural parser pipeline: an end-to-end system for the CoNLL 2018 shared task. In: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, Brussels, Belgium, pp. 133–142. Association for Computational Linguistics, October 2018
Google Scholar
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, December 2014
Google Scholar
Kondratyuk, D., Gavenčiak, T., Straka, M., Hajič, J.: LemmaTag: jointly tagging and lemmatizing for morphologically rich languages with BRNNs. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4921–4928. Association for Computational Linguistics (2018)
Google Scholar
Konkol, M., Konopík, M.: CRF-based Czech named entity recognizer and consolidation of Czech NER Research. In: Habernal, I., Matoušek, V. (eds.) TSD 2013. LNCS (LNAI), vol. 8082, pp. 153–160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40585-3_20
CrossRef
Google Scholar
Koo, T., Rush, A.M., Collins, M., Jaakkola, T., Sontag, D.: Dual decomposition for parsing with non-projective head automata. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, pp. 1288–1298. Association for Computational Linguistics, October 2010
Google Scholar
Ling, W., et al.: Finding function in form: compositional character models for open vocabulary word representation. CoRR (2015)
Google Scholar
Nakagawa, T.: Multilingual dependency parsing using global features. In: Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, Prague, Czech Republic, pp. 952–956. Association for Computational Linguistics, June 2007
Google Scholar
Nivre, J., et al.: Universal dependencies v1: a multilingual treebank collection. In: Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016), Portorož, Slovenia, pp. 1659–1666. European Language Resources Association (2016)
Google Scholar
Nivre, J., et al.: Universal dependencies 2.3 (2018). LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11234/1-2895
Novák, V., Žabokrtský, Z.: Feature engineering in maximum spanning tree dependency parser. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 92–98. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74628-7_14
CrossRef
Google Scholar
Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237. Association for Computational Linguistics (2018)
Google Scholar
Ševčíková, M., Žabokrtský, Z., Krůza, O.: Named entities in Czech: annotating data and developing NE tagger. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 188–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74628-7_26
CrossRef
Google Scholar
Ševčíková, M., Žabokrtský, Z., Straková, J., Straka, M.: Czech named entity corpus 1.1 (2014). LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11858/00-097C-0000-0023-1B04-C
Ševčíková, M., Žabokrtský, Z., Straková, J., Straka, M.: Czech named entity corpus 2.0 (2014). LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. http://hdl.handle.net/11858/00-097C-0000-0023-1B22-8
Spoustová, D.J., Hajič, J., Raab, J., Spousta, M.: Semi-supervised training for the averaged perceptron POS tagger. In: Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pp. 763–771. Association for Computational Linguistics, March 2009
Google Scholar
Straka, M.: UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In: Proceedings of CoNLL 2018: The SIGNLL Conference on Computational Natural Language Learning, Stroudsburg, PA, USA, pp. 197–207. Association for Computational Linguistics (2018)
Google Scholar
Straková, J., Straka, M., Hajič, J.: A new state-of-the-art Czech named entity recognizer. In: Habernal, I., Matoušek, V. (eds.) TSD 2013. LNCS (LNAI), vol. 8082, pp. 68–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40585-3_10
CrossRef
Google Scholar
Straková, J., Straka, M., Hajič, J.: Open-source tools for morphology, lemmatization, POS tagging and named entity recognition. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Stroudsburg, PA, USA, pp. 13–18. Johns Hopkins University, USA, Association for Computational Linguistics (2014)
Google Scholar
Straková, J., Straka, M., Hajič, J.: Open-source tools for morphology, lemmatization, POS tagging and named entity recognition. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, MD, USA, pp. 13–18. Johns Hopkins University, Association for Computational Linguistics (2014)
Google Scholar
Straková, J., Straka, M., Hajič, J.: Neural networks for featureless named entity recognition in Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2016. LNCS (LNAI), vol. 9924, pp. 173–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45510-5_20
CrossRef
Google Scholar
Straková, J., Straka, M., Hajič, J.: Neural architectures for nested NER through linearization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics (2019)
Google Scholar
Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)
Google Scholar
Žabokrtský, Z.: Treex - an open-source framework for natural language processing. In: Lopatková, M. (ed.) Information Technologies - Applications and Theory, vol. 788, pp. 7–14. Univerzita Pavla Jozefa Šafárika v Košiciach, Slovakia (2011)
Google Scholar
Zeman, D., Ginter, F., Hajič, J., Nivre, J., Popel, M., Straka, M.: CoNLL 2018 shared task: multilingual parsing from raw text to universal dependencies. In: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, Brussels, Belgium. Association for Computational Linguistics (2018)
Google Scholar