Skip to main content

Cloud-Based Digital Twin for Industrial Robotics

  • Conference paper
  • First Online:
Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11710))

Abstract

Production systems are becoming more flexible and agile to realize the need for more individualized products. Robotics technology can accomplish these demands, but programming and re-configuration of robots are associated with high costs, especially for small- and medium-sized enterprises. The use of digital twins can significantly reduce these costs by providing monitoring and simulation capabilities for the robot and its environment using real-time data. The integration with an ontology as a knowledge base to describe the robot and its 3d-environment enables an automatic configuration of the digital twin and the particular robot. In this paper, this concept is coupled with cloud-computing to enable an effortless integration as service in existing cloud architectures and easy access using the common web-technology-stack for the end-users. A novel architecture is presented and implemented to incorporate the real system with its digital twin, the ontology and a planner to infer the actual operations from the knowledge base. Finally, the implementation is applied to the industrial manufacturing domain to assemble different THT-Devices on a PCB to evaluate the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/SciGraph/SciGraph.

References

  1. Aichele, F., Schenke, B., Eckstein, B., Groz, A.: A framework for robot control software development and debugging using a real-time capable physics simulation. In: Proceedings of ISR 2016: 47st International Symposium on Robotics, Munich, Germany (2016)

    Google Scholar 

  2. Argyrou, A., Giannoulis, C., Papakostas, N., Chryssolouris, G.: A uniform data model for representing symbiotic assembly stations. Proc. CIRP 44, 85–90 (2016). 6th CIRP Conference on Assembly Technologies and Systems CATS, 2016

    Article  Google Scholar 

  3. Beckey, G.A.: Autonomous Robots. MIT Press, Cambridge (2005)

    Google Scholar 

  4. Gan, Y., Dai, X., Li, D.: Off-line programming techniques for multirobot cooperation system. Int. J. Adv. Robot. Syst. 10, 282 (2013)

    Article  Google Scholar 

  5. Haage, M., Profanter, S., Kessler, I., Perzylo, A., Somani, N., Sörnmo, O.: On cognitive robot woodworking in SMErobotics. In: Proceedings of ISR 2016: 47st International Symposium on Robotics, pp. 1–7 (2016)

    Google Scholar 

  6. Harris, A., Conrad, J.: Survey of popular robotics simulators, frameworks, and toolkits. In: Proceedings of IEEE Southeastcon (2011)

    Google Scholar 

  7. Hu, L., et al.: Modeling of cloud-based digital twins for smart manufacturing with MT connect. Proc. Manuf. 26, 1193–1203 (2018)

    Google Scholar 

  8. Kumar, K., Reel, P.: Analysis of contemporary robotics simulators. In:2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT) (2011)

    Google Scholar 

  9. Kuts, V., Modoni, G.E., Terkaj, W., Tähemaa, T., Sacco, M., Otto, T.: Exploiting factory telemetry to support virtual reality simulation in robotics cell. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds.) Augmented Reality, Virtual Reality, and Computer Graphics, AVR 2017. LNCS, vol. 10324, pp. 212–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_16

    Chapter  Google Scholar 

  10. Macho, M., Naegele, L., Hoffmann, A., Angerer, A., Reif, W.: A flexible architecture for automatically generating robot applications based on expert knowledge. In: Proceedings of ISR 2016: 47st International Symposium on Robotics, pp. 1–8 (2016)

    Google Scholar 

  11. Mcdermott, D., et al.: PDDL - the planning domain denition language (Technical report). CVC TR-98- 003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  12. Merdan, M., Hoebert, T., List, E., Lepuschitz, W.: Knowledge-based cyber-physical systems for assembly automation. Prod. Manuf. Res. 7, 223–254 (2019)

    Google Scholar 

  13. Michalos, G., Makris, S., Spiliotopoulos, J., Misios, I., Tsarouchi, P., Chryssolouris, G.: ROBO-PARTNER: seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. In: 5th CIPR Conference on Assembly Technologies and Systems, (CATS 2014), Dresden, Germany, November 2014

    Google Scholar 

  14. Proctor, F., Balakirsky, S., Kootbally, Z., Kramer, T., Schleno, C., Shackleford, W.P.: The canonical robot command language (CRCL). Ind. Robot: Int. J. 43, 495–502 (2016)

    Article  Google Scholar 

  15. Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. In: 15th IFAC Symposium on Information Control Problems in Manufacturing (INCOM), vol. 48, no. 3, pp. 567–572 (2015)

    Article  Google Scholar 

  16. Schlick, C.M., Faber, M., Kuz, S., Bützler, J.: A symbolic approach to self-optimisation in production system analysis and control. In: Brecher, C. (ed.) Advances in Production Technology. LNCS, pp. 147–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12304-2_11

    Chapter  Google Scholar 

  17. Sekala, A., Gwiazda, A., Kost, G., Banaś, W.: Modelling and simulation of a robotic work cell. In: IOP Conference Series: Materials Science and Engineering, vol. 227, p. 012116 (2017)

    Article  Google Scholar 

  18. Tavares, P., Silva, A., Costa, P., Veiga, G., Moreira, P.: Flexible work cell simulator using digital twin methodology for highly complex systems in industry 4.0. In: Iberian Robotics conference, pp. 541–552 (2017)

    Google Scholar 

  19. Terkaj, W., Tolio, T., Urgo, M.: A virtual factory approach for in situ simulation to support production and maintenance planning. CIRP Ann.- Manuf. Technol. 64(1), 451–454 (2015)

    Article  Google Scholar 

  20. Um, J., Weyer, S., Quint, F.: Plug-and-simulate within modular assembly line enabled by digital twins and the use of AutomationML. IFAC-PapersOnLine 50(1), 15904–15909 (2017)

    Article  Google Scholar 

  21. Perzylo, A., Somani, N., Rickert, M., Knoll, A.: An ontology for CAD data and geometric constraints as a link between product models and semantic robot task descriptions. In: International Conference on Intelligent Robots and Systems (IROS), pp. 4197–4203 (2015)

    Google Scholar 

  22. Wang, X.V., Wang, L., Mohammed, A., Givehchi, M.: Ubiquitous manufacturing system based on cloud: a robotics application. Robot. Comput. Integr. Manuf. 45, 116–125 (2017)

    Article  Google Scholar 

  23. Yan, K., Xu, W., Yao, B., Zhou, Z., Pham, D.: Digital twin-based energy modeling of industrial robots. In: the 18th Asia Simulation Conference (AsiaSim 2018), Kyoto, Japan, 27–29 October 2018

    Google Scholar 

  24. Patel, R., Hedelind, M., Lozan-Villegas, P.: Enabling robots in small-part assembly lines: the “rosetta approach”—an industrial perspective. In: The 7th German Conference on Robotics, Proceedings of ROBOTIK, pp. 1–5 (2012)

    Google Scholar 

  25. Zhuang, C., Liu, J., Xiong, H.: Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int. J. Adv. Manuf. Technol. 96, 1149–1163 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the “Production of the Future” program of the Austrian Ministry for Transport, Innovation and Technology under contract FFG 858707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Merdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoebert, T., Lepuschitz, W., List, E., Merdan, M. (2019). Cloud-Based Digital Twin for Industrial Robotics. In: Mařík, V., et al. Industrial Applications of Holonic and Multi-Agent Systems. HoloMAS 2019. Lecture Notes in Computer Science(), vol 11710. Springer, Cham. https://doi.org/10.1007/978-3-030-27878-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27878-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27877-9

  • Online ISBN: 978-3-030-27878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics