Skip to main content

Incorporating Artificial Intelligence into Medical Cyber Physical Systems: A Survey

  • Chapter
  • First Online:
Connected Health in Smart Cities

Abstract

Medical Cyber Physical Systems (MCPSs) prescribe a platform in which patient health information is acquired by the emerging Internet of Things (IoT) sensors, pre-processed locally, and processed via advanced machine intelligence algorithms in the cloud. The emergence of MCPSs holds the promise to revolutionize remote patient healthcare monitoring, accelerate the development of new drugs or treatments, and improve the quality-of-life for patients who are suffering from various medical conditions among other various applications. The amount of raw medical data gathered through the IoT sensors in an MCPS provides a rich platform that artificial intelligence algorithms can use to provide decision support for either medical experts or patients. In this paper, we provide an overview of MCPSs and the data flow through these systems. This includes how raw physiological signals are converted into features and are used by machine intelligence algorithms, the types of algorithms available for the healthcare domain, how the data and the decision support output are presented to the end user, and how all of these steps are completed in a secure fashion to preserve the privacy of the users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M.K. Aktas, G. Mateos, B. Kantarci, S. Andreescu, Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: opportunities and challenges, in 2015 IEEE International Conference on Services Computing (SCC), New York (June 2015), pp. 285–292

    Google Scholar 

  2. X. Chen, Z. Zhu, M. Chen, Y. Li, Large-scale mobile fitness app usage analysis for smart health. IEEE Commun. Mag. 56(4), 46–52 (2018)

    Article  Google Scholar 

  3. P. Wu, M.Y. Nam, J. Choi, A. Kirlik, L. Sha, R.B. Berlin, Supporting emergency medical care teams with an integrated status display providing real-time access to medical best practices, workflow tracking, and patient data. J. Med. Syst. 41(12), 186 (2017)

    Google Scholar 

  4. J. Jezewski, A. Pawlak, K. Horoba, J. Wrobel, R. Czabanski, M. Jezewski, Selected design issues of the medical cyber-physical system for telemonitoring pregnancy at home. Microprocess. Microsyst. 46, 35–43 (2016)

    Article  Google Scholar 

  5. G. Honan, A. Page, O. Kocabas, T. Soyata, B. Kantarci, Internet-of-everything oriented implementation of secure Digital Health (D-Health) systems, in Proceedings of the 2016 IEEE Symposium on Computers and Communications (ISCC), Messina (Jun 2016), pp. 718–725

    Google Scholar 

  6. A. Page, S. Hijazi, D. Askan, B. Kantarci, T. Soyata, Research directions in cloud-based decision support systems for health monitoring using Internet-of-Things driven data acquisition. Int. J. Serv. Comput. 4(4), 18–34 (2016)

    Google Scholar 

  7. 104th Congress Public Law 191, Health Insurance Portability and Accountability Act of 1996 (1996). https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm. Accessed 28 July 2017

  8. O. Kocabas, T. Soyata, M.K. Aktas, Emerging security mechanisms for medical cyber physical systems. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 401–416 (2016)

    Article  Google Scholar 

  9. G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. Da Xu, S. Kao-Walter, Q. Chen, L.R. Zheng, A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Ind. Inf. 10(4), 2180–2191 (2014)

    Article  Google Scholar 

  10. D.M. West, How 5G technology enables the health internet of things. Brookings Center for Technology Innovation 3, 1–20 (2016)

    Google Scholar 

  11. A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, B. Freisleben, IoT-based health monitoring via lorawan, in IEEE EUROCON 2017-17th International Conference on Smart Technologies (IEEE, Piscataway, 2017), pp. 519–524

    Google Scholar 

  12. A. Page, T. Soyata, J. Couderc, M. Aktas, B. Kantarci, S. Andreescu, Visualization of health monitoring data acquired from distributed sensors for multiple patients, in IEEE Global Telecommunications Conference (GLOBECOM), San Diego (Dec 2015), pp. 1–7

    Google Scholar 

  13. S. Aust, R.V. Prasad, I.G. Niemegeers, IEEE 802.11ah: advantages in standards and further challenges for sub 1 GHz Wi-Fi, in 2012 IEEE International Conference on Communications (ICC) (IEEE, Piscataway, 2012), pp. 6885–6889

    Google Scholar 

  14. S. Han, Y.H. Wei, A.K. Mok, D. Chen, M. Nixon, E. Rotvold, Building wireless embedded internet for industrial automation, in IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (IEEE, Piscataway, 2013), pp. 5582–5587

    Google Scholar 

  15. G. Mokhtari, Q. Zhang, G. Nourbakhsh, S. Ball, M. Karunanithi, Bluesound: a new resident identification sensor—using ultrasound array and BLE technology for smart home platform. IEEE Sens. J. 17(5), 1503–1512 (2017)

    Article  Google Scholar 

  16. W.L. Chen, L.B. Chen, W.J. Chang, J.J. Tang, An IoT-based elderly behavioral difference warning system, in 2018 IEEE International Conference on Applied System Invention (ICASI) (IEEE, Piscataway, 2018), pp. 308–309

    Book  Google Scholar 

  17. Y. Li, Z. Chi, X. Liu, T. Zhu, Passive-ZigBee: enabling ZigBee communication in IoT networks with 1000x+ less power consumption, in Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (ACM, New York, 2018), pp. 159–171

    Google Scholar 

  18. A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang, P. Liljeberg, Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Futur. Gener. Comput. Syst. 78, 641–658 (2018)

    Article  Google Scholar 

  19. M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, A.K. Jain, Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000)

    Article  Google Scholar 

  20. Y. Chen, M. Yang, X. Chen, B. Liu, H. Wang, S. Wang, Sensorineural hearing loss detection via discrete wavelet transform and principal component analysis combined with generalized eigenvalue proximal support vector machine and Tikhonov regularization. Multimed. Tools Appl. 77(3), 3775–3793 (2018)

    Article  Google Scholar 

  21. A. Ghandeharioun, S. Fedor, L. Sangermano, D. Ionescu, J. Alpert, C. Dale, D. Sontag, R. Picard, Objective assessment of depressive symptoms with machine learning and wearable sensors data, in Proceedings of the International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio (2017)

    Google Scholar 

  22. Y. Kim, N. Kaongoen, S. Jo, Hybrid-BCI smart glasses for controlling electrical devices, in 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (IEEE, Piscataway, 2015), pp. 1162–1166

    Google Scholar 

  23. C. Li, W.K. Cheung, J. Liu, J.K. Ng, Bayesian nominal matrix factorization for mining daily activity patterns, in 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (IEEE, Piscataway, 2016), pp. 335–342

    Google Scholar 

  24. G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Kim, H. Lee, E.M. Provost, Deep learning for robust feature generation in audiovisual emotion recognition, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, Piscataway, 2013), pp. 3687–3691

    Google Scholar 

  26. B., Jokanović, M. Amin, Fall detection using deep learning in range-Doppler radars. IEEE Trans. Aerosp. Electron. Syst. 54(1), 180–189 (2018)

    Article  Google Scholar 

  27. M. Li, V. Rozgic, G. Thatte, S. Lee, A. Emken, M. Annavaram, U. Mitra, D. Spruijt-Metz, S. Narayanan, Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 369–380 (Aug 2010)

    Article  Google Scholar 

  28. A. Sano, R.W. Picard, Stress recognition using wearable sensors and mobile phones, in IEEE Humane Association Conference on Affective Computing and Intelligent Interaction (ACII) (2013), pp. 671–676

    Google Scholar 

  29. B. Xie, H. Minn, Real-time sleep apnea detection by classifier combination. IEEE Trans. Inf. Technol. Biomed. 16(3), 469–477 (2012)

    Article  Google Scholar 

  30. V. Srinivasan, C. Eswaran, N. Sriraam, Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)

    Article  Google Scholar 

  31. B. Lei, S.A. Rahman, I. Song, Content-based classification of breath sound with enhanced features. Neurocomputing 141, 139–147 (2014)

    Article  Google Scholar 

  32. D. Sow, A. Biem, M. Blount, M. Ebling, O. Verscheure, Body sensor data processing using stream computing, in Proceedings of the International Conference on Multimedia Information Retrieval (ACM, New York, 2010), pp. 449–458

    Google Scholar 

  33. S. Souli, Z. Lachiri, Audio sounds classification using scattering features and support vectors machines for medical surveillance. Appl. Acoust. 130, 270–282 (2018)

    Article  Google Scholar 

  34. A. Page, T. Soyata, J. Couderc, M.K. Aktas, An open source ECG clock generator for visualization of long-term cardiac monitoring data. IEEE Access 3, 2704–2714 (2015)

    Article  Google Scholar 

  35. C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2006)

    MATH  Google Scholar 

  36. D. Sánchez-Morillo, M. López-Gordo, A. León, Novel multiclass classification for home-based diagnosis of sleep apnea hypopnea syndrome. Expert Syst. Appl. 41(4), 1654–1662 (2014)

    Article  Google Scholar 

  37. D.S. Lee, T.W. Chong, B.G. Lee, Stress events detection of driver by wearable glove system. IEEE Sens. J. 17(1), 194–204 (2017)

    MathSciNet  Google Scholar 

  38. W.H. Wang, Y.L. Hsu, P.C. Chung, M.C. Pai, Predictive models for evaluating cognitive ability in dementia diagnosis applications based on inertia-and gait-related parameters. IEEE Sens. J. 18(8), 3338–3350 (2018)

    Article  Google Scholar 

  39. M. Mursalin, Y. Zhang, Y. Chen, N.V. Chawla, Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing 241, 204–214 (2017)

    Article  Google Scholar 

  40. B. Nakisa, M.N. Rastgoo, D. Tjondronegoro, V. Chandran, Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2017)

    Article  Google Scholar 

  41. H. Li, D. Yuan, X. Ma, D. Cui, L. Cao, Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011 (2017)

    Article  Google Scholar 

  42. V. Chandola, S.R. Sukumar, J.C. Schryver, Knowledge discovery from massive healthcare claims data, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2013), pp. 1312–1320

    Google Scholar 

  43. B.M. Marlin, D.C. Kale, R.G. Khemani, R.C. Wetzel, Unsupervised pattern discovery in electronic health care data using probabilistic clustering models, in Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (ACM, New York, 2012), pp. 389–398

    Google Scholar 

  44. D.P. Chen, S.C. Weber, P.S. Constantinou, T.A. Ferris, H.J. Lowe, A.J. Butte, Clinical arrays of laboratory measures, or “clinarrays”, built from an electronic health record enable disease subtyping by severity, in AMIA (2007)

    Google Scholar 

  45. D. Sanchez-Morillo, M.A. Fernandez-Granero, A.L. Jiménez, Detecting COPD exacerbations early using daily telemonitoring of symptoms and k-means clustering: a pilot study. Med. Biol. Eng. Comput. 53(5), 441–451 (2015)

    Article  Google Scholar 

  46. N.P. Tatonetti, J.C. Denny, S.N. Murphy, G.H. Fernald, G. Krishnan, V. Castro, P. Yue, P.S. Tsau, I. Kohane, D.M. Roden, et al., Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin. Pharmacol. Ther. 90(1), 133 (2011)

    Article  Google Scholar 

  47. B. Ustun, M.B. Westover, C. Rudin, M.T. Bianchi, Clinical prediction models for sleep apnea: the importance of medical history over symptoms. J. Clin. Sleep Med. Off. Publ. Am. Acad. Sleep Med. 12(2), 161–168 (2016)

    Article  Google Scholar 

  48. S. Hijazi, A. Page, B. Kantarci, T. Soyata, Machine learning in cardiac health monitoring and decision support. IEEE Comput. Mag. 49(11), 38–48 (2016)

    Article  Google Scholar 

  49. A. Page, M.K. Aktas, T. Soyata, W. Zareba, J. Couderc, “QT Clock” to improve detection of QT prolongation in long QT syndrome patients. Heart Rhythm 13(1), 190–198 (2016)

    Article  Google Scholar 

  50. H.S. Mousavi, V. Monga, G. Rao, A.U.K. Rao, et al., Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. J. Pathol. Inform. 6(1), 15 (2015)

    Article  Google Scholar 

  51. E. Ataer-Cansizoglu, V. Bolon-Canedo, J.P. Campbell, A. Bozkurt, D. Erdogmus, J. Kalpathy-Cramer, S. Patel, K. Jonas, R.V.P. Chan, S. Ostmo, et al., Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis. Transl. Vis. Sci. Technol. 4(6), 5–5 (2015)

    Article  Google Scholar 

  52. I. Bisio, F. Lavagetto, M. Marchese, A. Sciarrone, A smartphone-centric platform for remote health monitoring of heart failure. Int. J. Commun. Syst. 28(11), 1753–1771 (2015)

    Article  Google Scholar 

  53. M. Bsoul, H. Minn, L. Tamil, Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 15(3), 416–427 (2011)

    Article  Google Scholar 

  54. D. Zhou, J. Luo, V.M.B. Silenzio, Y. Zhou, J. Hu, G. Currier, H.A. Kautz, Tackling mental health by integrating unobtrusive multimodal sensing, in AAAI, 1401–1409 (2015)

    Google Scholar 

  55. D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, in International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, Berlin, 2013), pp. 411–418

    Google Scholar 

  56. H. Chen, X. Qi, L. Yu, P.A. Heng, DCAN: deep contour-aware networks for accurate gland segmentation (2016). Preprint arXiv:1604.02677

    Google Scholar 

  57. V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  58. S. Kiranyaz, T. Ince, M. Gabbouj, Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016)

    Article  Google Scholar 

  59. H.C. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, R.M. Summers, Learning to read chest X-rays: recurrent neural cascade model for automated image annotation (2016). Preprint arXiv:1603.08486

    Google Scholar 

  60. Q. Li, R.G. Mark, G.D. Clifford, Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 29(1), 15 (2007)

    Article  Google Scholar 

  61. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  62. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. J. Basic Eng. 83(1), 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  63. P. Schulam, S. Saria, A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure, in Advances in Neural Information Processing Systems (2015), pp. 748–756

    Google Scholar 

  64. H. Neuvirth, M. Ozery-Flato, J. Hu, J. Laserson, M.S. Kohn, S. Ebadollahi, M. Rosen-Zvi, Toward personalized care management of patients at risk: the diabetes case study, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2011), pp. 395–403

    Google Scholar 

  65. J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)

    Article  Google Scholar 

  66. Y. Gordienko, S. Stirenko, Y. Kochura, O. Alienin, M. Novotarskiy, N. Gordienko, Deep learning for fatigue estimation on the basis of multimodal human-machine interactions (2017). Preprint arXiv:1801.06048

    Google Scholar 

  67. D.S. Zois, M. Levorato, U. Mitra, Energy-efficient, heterogeneous sensor selection for physical activity detection in wireless body area networks. IEEE Trans. Signal Process. 61(7), 1581–1594 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. U. Mitra, B.A. Emken, S. Lee, M. Li, V. Rozgic, G. Thatte, H. Vathsangam, D.S. Zois, M. Annavaram, S. Narayanan, M. Levorato, D. Spruijt-Metz, G. Sukhatme, KNOWME: a case study in wireless body area sensor network design. IEEE Commun. Mag. 50(5), 116–125 (2012)

    Article  Google Scholar 

  69. J. Hoey, C. Boutilier, P. Poupart, P. Olivier, A. Monk, A. Mihailidis, People, sensors, decisions: customizable and adaptive technologies for assistance in healthcare. ACM Trans. Interactive Intell. Syst. 2(4), 1–36 (2012)

    Article  Google Scholar 

  70. P. Paredes, R. Gilad-Bachrach, M. Czerwinski, A. Roseway, K. Rowan, J. Hernandez, PopTherapy: coping with stress through pop-culture, in Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2014), pp. 109–117

    Google Scholar 

  71. M. Rabbi, M.H. Aung, T. Choudhury, Towards health recommendation systems: an approach for providing automated personalized health feedback from mobile data, in Mobile Health (Springer, Berlin, 2017), pp. 519–542

    Google Scholar 

  72. I. Sundin, T. Peltola, M.M. Majumder, P. Daee, M. Soare, H. Afrabandpey, C. Heckman, S. Kaski, P. Marttinen, Improving drug sensitivity predictions in precision medicine through active expert knowledge elicitation (2017). Preprint arXiv:1705.03290

    Google Scholar 

  73. D. Chou, Health it and patient safety: building safer systems for better care. JAMA 308(21), 2282–2282 (2012)

    Article  Google Scholar 

  74. A.A. Bui, W. Hsu, Medical data visualization: toward integrated clinical workstations, in Medical Imaging Informatics (Springer, Berlin, 2010), pp. 139–193

    Google Scholar 

  75. F. Jager, A. Taddei, G.B. Moody, M. Emdin, G. Antolič, R. Dorn, A. Smrdel, C. Marchesi, R.G. Mark, Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biol. Eng. Comput. 41(2), 172–182 (2003)

    Article  Google Scholar 

  76. A. Golberger, L. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R. Mark, J. Mietus, G. Moody, P. Chung-Kan, H. Stenley, Physiobank, physiotoolkit, and physionet: component of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  77. K. Xu, S. Guo, N. Cao, D. Gotz, A. Xu, H. Qu, Z. Yao, Y. Chen, ECGLens: interactive visual exploration of large scale ECG data for arrhythmia detection, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18) (ACM, New York, 2018), Paper 663, 12 pp. https://doi.org/10.1145/3173574.3174237

  78. C.A. Christmann, G. Zolynski, A. Hoffmann, G. Bleser, Effective visualization of long term health data to support behavior change, in Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management: Health and Safety. DHM 2017, ed. by V. Duffy. Lecture Notes in Computer Science, vol. 10287 (Springer, Cham, 2017)

    Chapter  Google Scholar 

  79. C.A. Christmann, G. Zolynski, A. Hoffmann, G. Bleser, Effective visualization of long term health data to support behavior change, in International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (Springer, Berlin, 2017), pp. 237–247

    Google Scholar 

  80. A. Cuttone, M.K. Petersen, J.E. Larsen, Four data visualization heuristics to facilitate reflection in personal informatics, in International Conference on Universal Access in Human-Computer Interaction (Springer, Berlin, 2014), pp. 541–552

    Google Scholar 

  81. S. Theis, P. Rasche, C. Bröhl, M. Wille, A. Mertens, User-driven semantic classification for the analysis of abstract health and visualization tasks, in International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (Springer, Berlin, 2017), pp. 297–305

    Google Scholar 

  82. K. Tollmar, F. Bentley, C. Viedma, Mobile health mashups: making sense of multiple streams of wellbeing and contextual data for presentation on a mobile device, in 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (IEEE, Piscataway, 2012), pp. 65–72

    Google Scholar 

  83. S. Stusak, A. Tabard, F. Sauka, R.A. Khot, A. Butz, Activity sculptures: exploring the impact of physical visualizations on running activity. IEEE Trans. Vis. Comput. Graph. 20(12), 2201–2210 (2014)

    Article  Google Scholar 

  84. C. Fan, J. Forlizzi, A.K. Dey, A spark of activity: exploring informative art as visualization for physical activity, in Proceedings of the 2012 ACM Conference on Ubiquitous Computing (ACM, New York, 2012), pp. 81–84

    Google Scholar 

  85. R.A. Khot, D. Aggarwal, R. Pennings, L. Hjorth, F. Mueller, Edipulse: investigating a playful approach to self-monitoring through 3D printed chocolate treats, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (ACM, New York, 2017), pp. 6593–6607

    Google Scholar 

  86. F. Jonathan, J. Sonin, hGraph: an open system for visualizing personal health metrics. Involution Studios, Arlington, Tech. Rep. (April 2012)

    Google Scholar 

  87. A. Ledesma, M. Al-Musawi, H. Nieminen, Health figures: an open source javascript library for health data visualization. BMC Med. Inform. Decis. Mak. 16(1), 38 (2016)

    Google Scholar 

  88. D. Estrin, I. Sim, Open mHealth architecture: an engine for health care innovation. Science 330(6005), 759–760 (2010)

    Article  Google Scholar 

  89. A.A. Bui, D.R. Aberle, H. Kangarloo, Timeline: visualizing integrated patient records. IEEE Trans. Inf. Technol. Biomed. 11(4), 462–473 (2007)

    Article  Google Scholar 

  90. J. Plourde, D. Arney, J.M. Goldman, OpenICE: an open, interoperable platform for medical cyber-physical systems, in 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (IEEE, Piscataway, 2014), pp. 221–221

    Google Scholar 

  91. R. Kamaleswaran, C. Collins, A. James, C. McGregor, PhysioEx: visual analysis of physiological event streams, in Computer Graphics Forum, vol. 35 (Wiley Online Library, 2016), pp. 331–340

    Google Scholar 

  92. B. Maradani, H. Levkowitz, The role of visualization in tele-rehabilitation: a case study, in 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence (IEEE, Piscataway, 2017), pp. 643–648

    Google Scholar 

  93. S.H. Koch, C. Weir, D. Westenskow, M. Gondan, J. Agutter, M. Haar, D. Liu, M. Görges, N. Staggers, Evaluation of the effect of information integration in displays for ICU nurses on situation awareness and task completion time: a prospective randomized controlled study. Int. J. Med. Inform. 82(8), 665–675 (2013)

    Article  Google Scholar 

  94. H. Almohri, L. Cheng, D. Yao, H. Alemzadeh, On threat modeling and mitigation of medical cyber-physical systems, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (IEEE, Piscataway, 2017), pp. 114–119

    Google Scholar 

  95. G. Grispos, W.B. Glisson, K.K.R. Choo, Medical cyber-physical systems development: a forensics-driven approach, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (IEEE, Piscataway, 2017), pp. 108–113

    Google Scholar 

  96. N. Mowla, I. Doh, K. Chae, Evolving neural network intrusion detection system for MCPS, in 2017 19th International Conference on Advanced Communication Technology (ICACT) (IEEE, Piscataway, 2017), pp. 183–187

    Google Scholar 

  97. A. Boddy, W. Hurst, M. Mackay, A. El Rhalibi, A study into data analysis and visualisation to increase the cyber-resilience of healthcare infrastructures, in Proceedings of the 1st International Conference on Internet of Things and Machine Learning (IML ’17) (ACM, New York, 2017), Article 32, 7 pp. https://doi.org/10.1145/3109761.3109793

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolga Soyata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shishvan, O.R., Zois, DS., Soyata, T. (2020). Incorporating Artificial Intelligence into Medical Cyber Physical Systems: A Survey. In: El Saddik, A., Hossain, M., Kantarci, B. (eds) Connected Health in Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-030-27844-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27844-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27843-4

  • Online ISBN: 978-3-030-27844-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics