Skip to main content

The Impact of Climatic Conditions on PV/PVT Outcomes

  • Chapter
  • First Online:
Photovoltaic/Thermal (PV/T) Systems

Abstract

The dynamic behavior of photovoltaics is attributed to their dependence on solar irradiance levels and their material characteristics which makes them highly affected by temperature gain or loss. This chapter discusses the different climatic conditions that affect PV and PV/T systems such as solar irradiance, ambient temperature, wind speed, humidity, and dust. Each parameter is explained in terms of concept, type, and level of impact on PV/T. The impact is measured through observing changes in the electrical and thermal parameters of PV/T collectors such as power, electrical efficiency, thermal efficiency, and overall PV/T efficiency. Assessing PV/T collector behavior with respect to the environment around it intelligently deals with each issue to maximize the output of PV/T systems and choose suitable locations for installation. In addition, accurate assessment of the technology’s reliability can be made with knowledge of various parameters affecting its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, New York, 1991)

    Google Scholar 

  2. C. Fröhlich, History of solar radiometry and the world radiation reference. Metrologia 28, 111–115 (1991)

    Article  Google Scholar 

  3. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, A. Sharifi, A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev. 13, 1800–1818 (2009)

    Article  Google Scholar 

  4. W.C. Dickinson, P.N. Cheremisinoff, Solar Energy Technology Handbook (Butterworths, London, 1980)

    Google Scholar 

  5. L. Kumar, A.K. Skidmore, E. Knoles, Modeling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 11(5), 475–497 (1997)

    Article  Google Scholar 

  6. A. Sayigh, Practical Photovoltaic for Sustainable Electricity and Buildings, 1st edn. (Springer, Basel, 2017)., ISBN10 3319392786, ISBN13 9783319392783

    Book  Google Scholar 

  7. International energy agency (http://www.iea.org/)

  8. Earth radiation Budgest earth Radeation budget (http://marine.Rutgers.edu/mrs/education/classs/yuri/erb.html) NASA langlely research center (2006-10-17) Retrieved on 2006-10-17

  9. C.H. Duncan, R.C. Willson, J.M. Kendall, R.G. Harrison, J.R. Hickey, Latest rocket measurements of the solar constant. Sol. Energy 28, 385–390 (1982)

    Article  Google Scholar 

  10. K.Y. Kondratyev, Radiative Heat Exchange in the Atmosphere (Pergamon Press, New York, 1965)

    Google Scholar 

  11. L.D. Williams, R.G. Barry, J.T. Andrews, Application of computed global radiation for areas of high relief. J. Appl. Meteorol. 11, 526–533 (1972)

    Article  Google Scholar 

  12. T. Khatib, A. Mohamed, M. Mahmoud, K. Sopian, Estimating global solar energy using multilayer perception artificial neural network. Int. J. Energy 6(1), 25 (2012)

    Google Scholar 

  13. R.M. El-Shazly, Feasibility of concentrated solar power under Egyptian conditions, MSc Thesis, University of Kassel, Cairo University (Egypt) (2011)

    Google Scholar 

  14. M.T. Chaichan, K.H. Abaas, H.A. Kazem, F. Hasoon, H.S. Aljibori, A. Ali, K. Alwaeli, F.S. Raheem, A.H. Alwaeli, Effect of design variation on saved energy of concentrating solar power prototype, Proceedings of the World Congress on Engineering, WCE III 2012, London, U.K. (2012)

    Google Scholar 

  15. Asia/Pacific PV Markets 2010 (http://www.solarbuzz.com/AP10.htm)

  16. S. Duryea, S. Islam, W. Lawrance, A battery management system for stand-alone photovoltaic energy systems. IEEE Ind. Appl. Soc 7(3), 67–72 (2001)

    Article  Google Scholar 

  17. W. Durisch, H. Kiess, Crystalline silicon cells and technology, third generation concepts for photovoltaic conference, Osaka, Japan, May 12–16 2003

    Google Scholar 

  18. A. Chouder, S. Silvestre, N. Sadaoui, L. Rahmani, Simulation of a grid connected PV system based on the evaluation of main PV. Simul. Model. Pract. Theory 20(1), 46–58 (2012)

    Article  Google Scholar 

  19. K. Thongpao, P. Sripadungtham, P. Raphisak, K. Sriprapha, O. Ekkachart, Solar cells based on the influence of irradiance and module temperature, in Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), International Conference, (Chiang Mai, Thailand, 2010), pp. 153–160

    Google Scholar 

  20. F.W. Burari, A.S. Sambo, Model for the prediction of global solar radiation for Bauchi using meteorological data, Nigeria. J. Renew. Energy 91, 30–33 (2001)

    Google Scholar 

  21. A.M. Al-Salihi, M.M. Kadum, A.G. Mohammed, Estimation of global solar radiation on horizontal surface using meteorological measurement for different cities in Iraq. Asian J. Sci. Res 3(4), 240–248 (2010)

    Article  Google Scholar 

  22. S. Kalogirou, Solar Energy Engineering: Process and Systems (Academic Press, London, 2009)

    Google Scholar 

  23. J. Jarras, Feasibility of a Fund for Financing Solar Water Heaters and Projects Related to the Promotion of Renewable Energies in Jordan (MEMR Press, Amman, 1987)

    Google Scholar 

  24. D.H.W. Li, J.C. Lam, An analysis of climatic variables and design implications. Archit. Sci. Rev. 42(1), 15–25 (1999)

    Article  Google Scholar 

  25. T. Muneer, Solar radiation model for Europe. Build. Serv. Eng. Res. Technol. 11(4), 153–163 (1990)

    Article  Google Scholar 

  26. D.H.W. Li, J.C. Lam, Predicting solar irradiance on inclined surfaces using sky radiance data. Energ. Conver. Manage. 45(11–12), 1771–1783 (2004)

    Article  Google Scholar 

  27. E. Vartiainen, A new approach to estimating the diffuse irradiance on inclined surfaces. Renew. Energy 20(1), 45–64 (2000)

    Article  CAS  Google Scholar 

  28. G. Schaab, Modeling and visualization of the spatial and temporal variability of the irradiance by means of a geo-information system, Cartographic building blocks, Dresden, p. 160. (2000)

    Google Scholar 

  29. A. Al-Salaymeh, Modeling of global daily solar radiation on horizontal surfaces for Amman city. Emirates J. Eng. Res 11(1), 49–56 (2006)

    Google Scholar 

  30. T. Khatib, A. Mohamed, K. Sopian, A review of solar energy modeling techniques. Renew. Sustain. Energy Rev. 16, 2864–2869 (2012)

    Article  CAS  Google Scholar 

  31. J. Kreider, F. Kreith, Solar Energy Handbook (McGraw-Hill, New York, 1981)

    Book  Google Scholar 

  32. D.I. Wardle, D.C. McKay, Recent advances in pyranometry, in Proceedings of International Energy Agency, Task IX, Solar Radiation and Pyranometer Studies, (Norrkoping, Sweden), p. 984

    Google Scholar 

  33. G.A. Zerlaut, Solar radiometry instrumentation, calibration techniques, and standards. Sol. Cells 18, 189–203 (1986)

    Article  Google Scholar 

  34. B.C. Bush, Characterization of thermal effects in pyranometers: A data correction algorithm for improved measurement of surface insolation. J. Atmos. Oceanic Tech. 17, 165–175 (2000)

    Article  Google Scholar 

  35. E.G. Dutton et al., Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J. Atmos. Oceanic Tech. 18, 297–314 (2001)

    Article  Google Scholar 

  36. S. Wilcox, Improving global solar radiation measurements using zenith angle dependent calibration factors, in Proceedings Forum 2001 Solar Energy: The Power to Choose, (American Solar Energy Society, Washington, DC, 2001)

    Google Scholar 

  37. J. Michalsky, Optimal measurement of surface shortwave irradiance using current instrumentation. J. Atmos. Oceanic Tech. 16, 55–69 (1999)

    Article  Google Scholar 

  38. J.J. Michalsky, Toward the development of a diffuse horizontal shortwave irradiance working standard. J. Geophys. Res. (2005). https://doi.org/10.1029/2004JD00526

  39. I. Reda, Using a blackbody to calculate net-longwave responsively of shortwave solar pyranometers to correct, for their thermal offset error during outdoor calibration using the component sum method. J. Atmos. Oceanic Tech. 22, 1531–1540 (2005)

    Article  Google Scholar 

  40. C.A. Gueymard, D.R. Myers, Solar radiation measurement: Progress in radiometry for improved modeling, in Modeling Solar Radiation at the Earth Surface, ed. by V. Badescu, (Springer, Berlin, Heidelberg, 2008), pp. 1–27

    Google Scholar 

  41. C.A. Gueymard, D.R. Myers, Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol. Energy 83, 171–185 (2009)

    Article  Google Scholar 

  42. A.K. Rajput, R.K. Tewari, A. Sharma, Utility base estimated solar radiation at destination Pune, Maharashtra, India. Int. J. Pure Appl. Sci. Technol 13(1), 19–26 (2012)

    Google Scholar 

  43. J. Almorex, Estimating global solar radiation from common meteorological data in Aranjuez-Spain. Turk. J. Phys. 35, 53–64 (2011)

    Google Scholar 

  44. B. Marion, B. Kroposki, K. Emery, J. del Cueto, D. Myers, C. Osterwald, Validation of a Photovoltaic Module Energy Ratings Procedure at NREL (Golden, National Renewable Energy Laboratory, 1999)

    Book  Google Scholar 

  45. M.A. Bashir, H.M. Ali, S. Khalil, M. Ali, A.M. Siddiqui, Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan. Int. J. Photoenergy, Hindawi Publishing Corporation 2014, Article ID 898414,. 8 pages (2014)

    Google Scholar 

  46. J. Cano, Photovoltaic modules: Effect of tilt angle on soiling, MSC Thesis, Arizona State University (2011)

    Google Scholar 

  47. S.M. Salih, L.A. Kadim, Effect of tilt angle orientation on photovoltaic module performance. ISESCO J. Sci. Technol 10(17), 19–25 (2014)

    Google Scholar 

  48. E.D. Mehleri, P.L. Zervas, H. Sarimveis, J.A. Palyvos, N.C. Markatos, Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renew. Energy, Elsevier 35(11), 2468–2475 (2010)

    Article  Google Scholar 

  49. C. Emanuele, The disagreement between anisotropic-isotropic diffuse solar radiation models as a function of solar declination: Computing the optimum tilt angle of solar panels in the area of southern-Italy. Smart Grid Renew. Energy 3, 253–259 (2012)

    Article  Google Scholar 

  50. E.C.J. Kern, M.C. Rissell, Combined photovoltaic and thermal hybrid collector systems. 13th IEEE photovoltaic specialists conference, Washington, D.C., 1978

    Google Scholar 

  51. M.J.M. Jong, H.A. Zondag, System studies on combined PV/Thermal panels. 9th international conference on solar energy in high latitudes, Leiden, the Netherlands, 2001

    Google Scholar 

  52. P. Barnwal, G.N. Tiwari, Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Sol. Energy 82(12), 1131–1144 (2008)

    Article  CAS  Google Scholar 

  53. J. Guo, S. Lin, J.I. Bilbao, S.D. White, A.B. Sproul, A review of photovoltaic thermal (PV/T) heat utilization with low temperature desiccant cooling and dehumidification. Renew. Sustain. Energy Rev. 67, 1–14 (2017)

    Article  Google Scholar 

  54. A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan, PV/T (photovoltaic/thermal): Status and future prospects. Renew. Sustain. Energy Rev. 77, 109–130 (2017)

    Article  Google Scholar 

  55. R. Kumar, M.A. Rosen, A critical review of photovoltaic–thermal solar collectors for air heating. Appl. Energy 88(11), 3603–3614 (2011)

    Article  CAS  Google Scholar 

  56. A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, Influence of the base fluid on the thermo-physical properties of nanofluids with surfactant. Case Stud. Therm. Eng . Accepted 13, 100340 (2019). https://doi.org/10.1016/j.csite.2018.10.001

    Article  Google Scholar 

  57. A.H.A. Al-Waeli, H.A. Kazem, K. Sopian, M.T. Chaichan, Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. Int. J. Sustain. Energy 37(6), 558–578 (2018). https://doi.org/10.1080/14786451.2017.1323900

    Article  Google Scholar 

  58. A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, Comparison study of indoor/outdoor experiments of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system enhancement. Energy 151, 33–44 (2018)

    Article  CAS  Google Scholar 

  59. A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energ. Conver. Manage. 148(15), 963–973 (2017). https://doi.org/10.1016/j.enconman.2017.06.072

    Article  CAS  Google Scholar 

  60. A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan, Photovoltaic thermal PV/T systems: A review. Int. J. Comput. Appl. Sci 2(2), 62–67 (2017)

    Google Scholar 

  61. A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, A.N. Al-Shamani, An experimental investigation on using of nano-SiC-water as base-fluid for photovoltaic thermal system. Energy Conserv. Manag 142, 547–558 (2017)

    Article  CAS  Google Scholar 

  62. A.H. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energ. Conver. Manage. 151, 693–708 (2017)

    Article  CAS  Google Scholar 

  63. A.H. Al-Walei, M.T. Chaichan, K. Sopian, H.A. Kazem, Energy storage: CFD modeling of thermal energy storage for a Phase Change Materials (PCM) added to a PV/T using nanofluid as a coolant. J. Sci Eng. Res 4(12), 193–202 (2017)

    CAS  Google Scholar 

  64. A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, J.H. Yousif, M.T. Chaichan, A. Ibrahim, S. Mat, M.H. Ruslan, Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol. Energy 162, 378–396 (2018)

    Article  CAS  Google Scholar 

  65. A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, H.B. Mahood, A.A. Khadom, Modeling and experimental validation of a PV/T system using nanofluid coolant and nano-PCM. Sol. Energy 177, 178–191 (2019). https://doi.org/10.1016/j.solener.2018.11.016

    Article  CAS  Google Scholar 

  66. M. Mohsenzadeh, R. Hosseini, A photovoltaic / thermal system with a combination of a booster diffuse re fl ector and vacuum tube for generation of electricity and hot water production. Renew. Energy 78, 245–252 (2015)

    Article  Google Scholar 

  67. S. Calnan, Applications of oxide coatings in photovoltaic devices. Coatings 4, 162–202 (2014)

    Article  CAS  Google Scholar 

  68. J.I. Rosell, X. Vallverdu, M.A. Lechon, M. Ibanez, Design and simulation of a low concentrating photovoltaic/thermal system. Energ. Conver. Manage. 46, 3034–3046 (2005)

    Article  CAS  Google Scholar 

  69. N. Xu, J. Ji, W. Sun, W. Huang, J. Li, Z. Jin, Numerical simulation and experimental validation of a high concentration photovoltaic / thermal module based on point focus Fresnel lens. Appl. Energy 168, 269–281 (2016)

    Article  Google Scholar 

  70. J.S. Coventry, Performance of a concentrating photovoltaic / thermal solar collector. Sol. Energy 78, 211–222 (2005)

    Article  CAS  Google Scholar 

  71. L.R. Bernardo et al., Performance evaluation of low concentrating photovoltaic/thermal systems: A case study from Sweden. Sol. Energy 85, 1499–1510 (2011)

    Article  Google Scholar 

  72. D.B. Singh, G.N. Tiwari, Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: A comparative study. Sol. Energy 142, 144–158 (2017)

    Article  Google Scholar 

  73. D.B. Singh, G.N. Tiwari, Exergo-economic, enviro-economic and productivity analyses of basin type solar stills by incorporating N identical PVT compound parabolic concentrator collectors: A comparative study. Energ. Conver. Manage. 135, 129–147 (2017)

    Article  Google Scholar 

  74. H. Helmers, K. Kramer, Multi-linear performance model for hybrid (C) PVT solar collectors. Sol. Energy 92, 313–322 (2013)

    Article  Google Scholar 

  75. S. Yilmaz, H. Riza, Energy supply in a green school via a photovoltaic-thermal power system. Renew. Sustain. Energy Rev. 57, 713–720 (2016)

    Article  Google Scholar 

  76. S. Sharma, A. Tahir, K.S. Reddy, T.K. Mallick, Solar energy materials & solar cells performance enhancement of a building-integrated concentrating photovoltaic system using phase change material. Sol. Energy Mater. Sol. Cells 149, 29–39 (2016)

    Article  CAS  Google Scholar 

  77. M.S. Buday, Measuring irradiance, temperature and angle of incidence effects on photovoltaic modules in Auburn Hills, Michigan, MSC, University of Michigan, (2011)

    Google Scholar 

  78. S. Al-Yahyai, Y. Charabi, A. Gastli, Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renew. Sustain. Energy Rev. 14(9), 3192–3198 (2010)

    Article  Google Scholar 

  79. A. Al-Tarabsheh, S. Voutetakis, A.I. Papadopoulos, B. Seferlis, I. Etiera, O. Saraereh, Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells. Chem. Eng. Trans. 35, 1387–1392 (2013)

    Google Scholar 

  80. J.A. del Cueto, PV Module Energy Ratings Part II: Feasibility of Using the PERT in Deriving Photovoltaic Module Energy Ratings (National Renewable Energy Laboratory, Golden, 2007)

    Google Scholar 

  81. D.T. Lobera, S. Valkealahti, Dynamic thermal model of solar PV systems under varying climatic conditions. Sol. Energy 93, 183–194 (2013)

    Article  Google Scholar 

  82. E. Zambolin, D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84, 1382–1396 (2010)

    Article  CAS  Google Scholar 

  83. A. Gregg, T. Parker, R. Swenson, A “real world” examination of PV system design and performance. Conf. Rec. IEEE Photovoltaic Spec. Conf. 31, 1587–1592 (2005)

    Google Scholar 

  84. Y. Charabi, B.H.M. Rhouma, A. Gastli, GIS-based estimation of roof-PV capacity & energy production for the Seeb region in Oman. IEEE Int. Energy Conf. Renew. Energy 57, 635–644 (2013)

    Article  Google Scholar 

  85. A. Gastli, Y. Charabi, S. Zekri, GIS-based assessment of combined CSP electric power & seawater desalination plant for Duqum-Oman. Renew. Sustain. Energy Rev. 14(2), 821–827 (2010)

    Article  Google Scholar 

  86. S.A. Ghaznafar, M. Fisher, Vegetation of the Arabian Peninsula (Kluer Academin Publishers, Dordrecht, 1998), pp. 5–38

    Book  Google Scholar 

  87. B.R. Hughes, N.B.S. Cherisa, O. Beg, Computational study of improving the efficiency of photovoltaic panels in the UAE. World Acad. Sci. Eng. Technol. 5(1), 33 (2011)

    Google Scholar 

  88. G. George Makrides, B. Zinsser, A. Phinikarides, M. Schubert, G.E. Georghiou, Temperature and thermal annealing effects on different photovoltaic technologies. Renew. Energy 43, 407–417 (2012)

    Article  CAS  Google Scholar 

  89. F.A. Mutlak, Design and fabrication of parabolic trough solar collector for thermal energy applications, Ph. D Thesis, University of Baghdad, (2011, March)

    Google Scholar 

  90. M.T. Chaichan, K.I. Abaas, H.A. Kazem, The effect of variable designs of the central receiver to improve the solar tower efficiency. Int. J. Eng. Sci. 1(7), 56–61 (2012)

    Google Scholar 

  91. H.A. Kazem, M.T. Chaichan, Status and future prospects of renewable energy in Iraq. Renew. Sustain. Energy Rev. 16(8), 6007–6012 (2012)

    Article  Google Scholar 

  92. Y. Franghiadakis, P. Tzanetakis, Explicit empirical relation for the monthly average cell-temperature performance ratio of photovoltaic arrays. Prog. Photovolt. Res. Appl. 14, 541–551 (2006)

    Article  Google Scholar 

  93. R. Chenni, M. Makhlouf, T. Kerbache, A. Bouzid, A detailed modeling method for photovoltaic cells. Energy 32, 1724–1730 (2007)

    Article  CAS  Google Scholar 

  94. W. Durisch, B. Bitnar, J.C. Mayor, H. Kiess, K.H. Lam, J. Close, Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation. Sol. Energy Mater. Sol. Cells 91, 79–84 (2007)

    Article  CAS  Google Scholar 

  95. E. Skoplaki, J.A. Palyvos, Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 34, 23–29 (2009)

    CAS  Google Scholar 

  96. M.G. Farr, J.S. Stein, Spatial variations in temperature across a photovoltaic array, proceeding to IEEE 40th photovoltaic specialist conference (PVSC), 2014

    Google Scholar 

  97. A.D. Jones, C.P. Underwood, A thermal model for photovoltaic systems. Sol. Energy 70, 349–359 (2001)

    Article  CAS  Google Scholar 

  98. H.F. Tsai, H.L. Tsai, Implementation and verification of integrated thermal and electrical models for commercial PV modules. Sol. Energy 86, 654–665 (2012)

    Article  Google Scholar 

  99. V.V. Tyagia, S.C. Kaushik, S.K. Tyagi, Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew. Sustain. Energy Rev. 16, 1383–1398 (2012)

    Article  Google Scholar 

  100. H.G. Teo, P.S. Lee, M.N.A. Hawlader, An active cooling system for photovoltaic modules. Appl. Energy 90, 309–315 (2012)

    Article  Google Scholar 

  101. F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, M. Adeli, An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl. Energy 87, 2328–2339 (2010)

    Article  Google Scholar 

  102. M.A.M. Rosli, S. Mat, M.K. Anuar, K. Sopian, M.Y. Sulaiman, S. Ellias, Progress on flat-plate water based of photovoltaic thermal (PV/T) system: A review. Iranica J. Energy Environ 5(4), 407–418 (2014)

    Google Scholar 

  103. S. Krauter, Increased electrical yield via water flow over the front of photovoltaic panels. Sol. Energy Mater. Sol. Cells 82, 131–137 (2004)

    Article  CAS  Google Scholar 

  104. S. Odehand, M. Behnia, Improving photovoltaic module efficiency using water cooling. Heat Transfer Eng 30(6), 499–505 (2009)

    Article  CAS  Google Scholar 

  105. A.S. Joshi, A. Tiwari, G.N. Tiwari, I. Dincer, B.V. Reddy, Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. Int. J. Therm. Sci. 48, 154–164 (2009)

    Article  CAS  Google Scholar 

  106. D.J. Yang, Z.F. Yuan, P.H. Lee, H.M. Yin, Simulation and experimental validation of heat transfer in a novel hybrid solar panel. Int. J. Heat Mass Transf. 55, 1076–1082 (2012)

    Article  Google Scholar 

  107. T. Kerzmann, L. Schaefer, System simulation of a linear concentrating photovoltaic system with an active cooling system. Renew. Energy 41, 254–261 (2012)

    Article  Google Scholar 

  108. M. Chandrasekar, S. Suresh, T. Senthilkumar, M.G. Karthikeyan, Passive cooling of standalone flat PV module with cotton wick structures. Energ. Conver. Manage. 71, 43–50 (2013)

    Article  CAS  Google Scholar 

  109. J.R.E.C. Kern, M.C. Russell, Combined photovoltaic and thermal hybrid collector systems, in Proceedings of the 13th IEEE PV Specialist Conference, (1978), pp. 1153–1157

    Google Scholar 

  110. X. Zhang, X. Zhao, S. Smith, J. Xub, X. Yuc, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew. Sustain. Energy Rev. 16, 599–617 (2012)

    Article  CAS  Google Scholar 

  111. X. Zhao, X. Zhang, S.B. Riffat, X. Su, Theoretical investigation of a novel PV/T roof module for heat pump operation. Energ. Conver. Manage. 52, 603–614 (2011)

    Article  CAS  Google Scholar 

  112. K.E. Amori, H.M.T. Al-Najar, Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq. Appl. Energy 98(100), 384–395 (2012)

    Article  Google Scholar 

  113. M. Koehl, M. Heck, S. Wiesmeier, Modeling of conditions for accelerated life time testing of humidity impact on PV-modules based on monitoring of climatic data. Sol. Energy Mater. Sol. Cells 99, 282–291 (2012)

    Article  CAS  Google Scholar 

  114. M.D. Kempe, Modeling of rates of moisture ingress into photovoltaic modules. Sol. Energy Mater. Sol. Cells 90(16), 2720–2738 (2006)

    Article  CAS  Google Scholar 

  115. Rotronic Instrument Corp., The Rotronic Humidity Handbook, All you never wanted to know about humidity and didn’t want to ask! 12/2005. www.rotronic-usa.com

  116. A.H. Fanney, M.W. Davis, B.P. Dougherty, D.L. King, W.E. Boyson, J.A. Kratochvil, Comparison of photovoltaic module performance measurements. Trans. ASME 128, 152 (2006)

    CAS  Google Scholar 

  117. K. Morita, T. Inoue, H. Kato, I. Tsuda, Y. Hishikawa, Degradation factor analysis of crystalline-Si PV modules through long-term field exposure test, in Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion, (2003, May), pp. 1948–1951

    Google Scholar 

  118. N.G. Dhere, N.R. Raravikar, Adhesional shear strength and surface analysis of a PV module deployed in harsh coastal climate. Sol. Energy Mater. Sol. Cells 67(1–4), 363–367 (2001)

    Article  CAS  Google Scholar 

  119. B. Bhattachary, S. Dey, B. Mustaphi, Some analytical studies on the performance of grid connected solar photovoltaic system with different parameters, proceeding to 3rd international conference on material processing and materials science characterization (ICMPC-2014), vol. 6, pp. 1942–1950, 2014

    Google Scholar 

  120. R. Laronde, A. Charki, D. Bigaud, Lifetime estimation of a photovoltaic module subjected to corrosion due to damp heat testing. J. Sol. Energy Eng 135(2), Article ID 021010 . 8 pages (2013)

    Article  Google Scholar 

  121. C. Peike, S. Hoffmann, P. Hulsmann, Origin of dampheat induced cell degradation. Sol. Energy Mater. Sol. Cells 116, 49–54 (2013)

    Article  CAS  Google Scholar 

  122. F. Touati, A. Massoud, J. Abu Hamad, S.A. Saeed, Effects of environmental and climatic conditions on PV efficiency in Qatar, International conference on renewable energies and power quality (ICREPQ’13), Bilbao (Spain), 20th to 22th March, 2013

    Google Scholar 

  123. B.A.L. Gwandu, D.J. Creasey, Humidity: A factor in the appropriate positioning of a photovoltaic power station. Renew. Energy 6(3), 313–316 (1995)

    Article  Google Scholar 

  124. M.D. Kempe, Modeling of rates of moisture ingress into photovoltaic modules. Sol. Energy Mater. Sol. Cells 90(16), 2720–2738 (2006)

    Article  CAS  Google Scholar 

  125. J.K. Prakash, N. Gopinath, V. Kirubakaran, Optimization of solar PV panel output: A viable and cost effective solotion, International Journal of Advanced Technology & Engineering Research (IJATER) National Conference on “Renewable Energy Innovations for Rural Development” ISSN No: 2250–3536 20, New Delhi (2014)

    Google Scholar 

  126. Z.A. Darwish, H.A. Kazem, K. Sopian, M.A. Alghoul, M.T. Chaichan, Impact of some environmental variables with dust on solar photovoltaic (PV) performance: Review and research status. Int. J. Energy Environ 7(4), 152–159 (2013)

    Google Scholar 

  127. V.B. Omubo-Pepple, C. Israel-Cookey, G.I. Alamunokuma, Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur. J. Sci. Res. 35, 173–180 (2009)

    Google Scholar 

  128. A.A. Katkar, N.N. Shinde, G.C. Koli, S.P. Gaikwad, Evaluation of industrial solar cell w.r.t. temperature. IOSR J. Mech. Civ. Eng (IOSR-JMCE) 3, 27–38 (2013)

    Google Scholar 

  129. H.A. Kazem, M.T. Chaichan, I.M. Al-Shezawi, H.S. Al-Saidi, H.S. Al-Rubkhi, J.K. Al-Sinani, A.H.A. Al-Waeli, Effect of humidity on the PV performance in Oman. Asian Trans. Eng 2(4), 29–32 (2012)

    Google Scholar 

  130. T. Al-Hanai, R.B. Hashim, L. El Chaar, L.A. Lamont, Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system. Renew. Energy 36, 2615–2622 (2011)

    Article  CAS  Google Scholar 

  131. E.B. Ettah, A.P. Udoimuk, J.N. Obiefuna, F.E. Opara, The effect of relative humidity on the efficiency of solar panels in Calabar, Nigeria. Univers J. Manag. Soc. Sci 2(3), 8–11 (2012)

    Google Scholar 

  132. H.A. Kazem, M.T. Chaichan, Effect of humidity on photovoltaic performance based on experimental study. Int. J. Appl. Eng. Res. 10(23), 43572–43577 (2015)

    Google Scholar 

  133. E. Klampaftis, K.R. McIntosh, B.S. Richards, Degradation of an undiffused SI–SIO2 interface due to humidity, 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3–7 Sept 2007

    Google Scholar 

  134. M.K. Panjwani, B. NarejoG, Effect of humidity on the efficiency of solar cell (photovoltaic). Int. J. Eng. Res. General Sci 2(4), 499–503 (2014)

    Google Scholar 

  135. V.B. Omubo-Pepple, I. Tamunobereton-ari, M.A. Briggs-Kamara, Influence of meteorological parameters on the efficiency of photovoltaic module in some cities in the Niger delta of Nigeria. J. Asian Sci. Res 3(1), 107–113 (2013)

    Google Scholar 

  136. A. Rachman, K. Sopian, S. Mat, M. Yahya, Feasibility study and performance analysis of solar assisted desiccant cooling technology in hot and humid climate. Am. J. Environ. Sci. 7(3), 207–211 (2011)

    Article  Google Scholar 

  137. M.D. Kemp, Control of moisture ingress into photovoltaic modules, in 31st IEEE Photovoltaic Specialists Conference and Exhibition, (Lake Buena Vista, Florida, 2005)

    Google Scholar 

  138. J.H. Wohlgemuth, S. Kurtz, Reliability testing beyond qualification as a key component in photovoltaics progress toward grid parity, proceeding in IEEE international reliability physics symposium monterey, California, April 10–14, 2011

    Google Scholar 

  139. IEC: International Electro-technical Commission, Standard IEC61215: Crystalline silicon terrestrial photovoltaic (PV) modules, design qualification and type approval IEC Central Office, Geneva, Switzerland, 1987

    Google Scholar 

  140. M. Vazquez, R.S. Ignacio, Photovoltaic module reliability model based on field degradation studies. Prog. Photovolt. Res. Appl. 16, 419–433 (2008)

    Article  CAS  Google Scholar 

  141. M.A. Quintana, D.L. King, T.J. McMahon, C.R. Osterwald, Commonly observed degradation in field-aged photovoltaic modules, in Proc. 29th IEEE Photovoltaic Specialists Conference, (2002), pp. 1436–1439

    Google Scholar 

  142. M.A. Munoz, M.C. Alonso-Garcia, V. Nieves, F. Chenlo, Early degradation of silicon PV modules and guaranty conditions. Sol. Energy 85, 2264–2274 (2011)

    Article  CAS  Google Scholar 

  143. A. Ndiaye, A. Charki, A. Kobi, C.M.F. Ke’be´, P.A. Ndiaye, V. Sambou, Degradations of silicon photovoltaic modules: A literature review. Sol. Energy 96, 140–151 (2013)

    Article  Google Scholar 

  144. A. Skoczek, T. Sample, E.D. Dunlop, H.A. Ossenbrink, Electrical performance results from physical stress testing of commercial PV modules to the IEC61215 test sequence. Sol. Energy Mater. Sol. Cells 92, 1593–1604 (2008)

    Article  CAS  Google Scholar 

  145. K.W. Jansen, A.E. Delahoy, A laboratory technique for the evaluation of electrochemical transparent conductive oxide delamination from glass substrates. Thin Solid Films 423, 153–160 (2003)

    Article  CAS  Google Scholar 

  146. G. Oreski, G.M. Wallner, Aging mechanisms of polymeric films for PV encapsulation. Sol. Energy 79, 612–617 (2005)

    Article  CAS  Google Scholar 

  147. G. Oreski, G.M. Wallner, Evaluation of the aging behavior of ethylene copolymer films for solar applications under accelerated weathering conditions. Sol. Energy 83, 1040–1047 (2009)

    Article  CAS  Google Scholar 

  148. T. Kojima, T. Yanagisawa, The evaluation of accelerated test for degradation a stacked a-Si solar cell and EVA films. Sol. Energy Mater. Sol. Cells 81(1), 119–123 (2004)

    Article  CAS  Google Scholar 

  149. C.R. Osterwald, A. Anderberg, S. Rummel, L. Ottoson, Degradation analysis of weathered crystalline-silicon PV modules, in 29th IEEE Photovoltaic Specialists Conference, (New Orleans, Louisiana, 2002)

    Google Scholar 

  150. J.H. Wohlgemuth, D.W. Cunningham, A.M. Nguyen, G. Kelly, D. Amin, Failure modes of crystalline silicon modules, in Proceedings of PV Module Reliability Workshop, (2010)

    Google Scholar 

  151. E. Rueland, A. Herguth, A. Trummer, S. Wansleben, P. Fath, Optical l-crack detection in combination with stability testing for inline inspection of wafers and cells, in Proceedings of 20th EUPVSEC, (Barcelona, 2005), pp. 3242–3245

    Google Scholar 

  152. W. Dallas, O. Polupan, S. Ostapenko, Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers. Meas. Sci. Technol. 18, 852–858 (2007)

    Article  CAS  Google Scholar 

  153. V.J. Fesharaki, M. Dehghani, J.J. Fesharaki, The effect of temperature on photovoltaic cell efficiency, in Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation (ETEC ‘11), Tehran, Iran, (2011, November)

    Google Scholar 

  154. R. Siddiqui, U. Bajpai, Deviation in the performance of solar module under climatic parameter as ambient temperature and wind velocity in composite climate. Int. J. Renew. Energy Res 2(3), 486–490 (2012)

    Google Scholar 

  155. E.B. Ettah, E.E. Eno, A.B. Udoimuk, The effects of solar panel temperature on the power output efficiency Calabar, Nigeria. J. Assoc. Radiograph Nigeria 23, 16–22 (2009)

    Google Scholar 

  156. W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (Wiley, New York, 1999)

    Google Scholar 

  157. J.K. Kaldellis, M. Kapsali, K.A. Kavadias, Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew. Energy 66, 612–624 (2014)

    Article  Google Scholar 

  158. H.W. Tieleman, Wind tunnel simulation of the turbulence in the surface layer. J. Wind Eng. Ind. Aerodyn. 36, 1309–1318 (1990)

    Article  Google Scholar 

  159. J. Burdick et al., Qualification testing of thin-film and crystalline photovoltaic modules. Sol. Energy Mater. Sol. Cells 41/42, 575–586 (1996)

    Article  CAS  Google Scholar 

  160. B. Edwards, Collector deflections due to wind gusts and control scheme design. Sol. Energy 25, 231–234 (1980)

    Article  Google Scholar 

  161. A. Radu, E. Axinte, C. Theohari, Steady wind pressures on solar collectors on flat- roofed buildings. J. Wind Eng. Ind. Aerodyn. 23(1–3), 249–258 (1986)

    Article  Google Scholar 

  162. A. Radu, E. Axinte, Wind forces on structures supporting solar collectors. J. Wind Eng. Ind. Aerodyn. 32, 93–100 (1989)

    Article  Google Scholar 

  163. Y. Zhou, A. Kareem, Definition of wind profiles in ASCE 7. J. Struct. Eng. 128(8), 1082–1086 (2002)

    Article  Google Scholar 

  164. National Research Council, National Building Code of Canada, 13th edn. (Associate Committee on the National Building Code, Ottawa, 2010)

    Google Scholar 

  165. G.S. Wood, R.O. Denoon, K.C. Kwok, Wind loads on industrial solar panel arrays and supporting roof structure. Wind Struct. 4(6), 481–494 (2001)

    Article  Google Scholar 

  166. G.A. Kopp, D. Surry, K. Chen, Wind loads on a solar array. Wind Struct. 5(5), 393–406 (2002)

    Article  Google Scholar 

  167. T. Bhattacharya, A.K. Chakraborty, K. Pal, Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India, Hindawi Publishing Corporation. J. Sol. Energy, Article ID 817078, 5 pages (2014). https://doi.org/10.1155/2014/817078

    Article  Google Scholar 

  168. N. Vasan, T. Stathopoulos, Wind tunnel assessment of the wind velocity distribution on vertical façades, Proceedings of eSim 2012: The Canadian conference on building simulation, Page 61 of 614, Halifax Nova Scotia, Canada, May 1–4 2012

    Google Scholar 

  169. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovolt. Res. Appl. 19, 84–92 (2011)

    Article  CAS  Google Scholar 

  170. A. Rao, M. Mani, Evaluating the nature and significance of ambient wind regimes on solar photovoltaic system performance, Building Simulation Applications BSA 2013, 1st IBPSA Italy conference, Bozen-Bolzano, 2013, pp. 395–405

    Google Scholar 

  171. H. Matsukawa, K. Kurokawa, Temperature fluctuation analysis of photovoltaic modules at short time interval, in 31st IEEE Photovoltaic Specialists Conference, (2005), pp. 1816–1819

    Google Scholar 

  172. S. Armstrong, W.G. Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 30, 1488–1495 (2010)

    Article  Google Scholar 

  173. C. Schwingshackla, M. Petittaa, J.E. Wagnera, G. Belluardoc, D. Moserc, M. Castellia, M. Zebischa, A. Tetzlaff, Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia 40, 77–86 (2013)

    Article  Google Scholar 

  174. M. Mattei, G. Notton, G. Cristofari, M. Muselli, P. Poggi, Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 31, 553–567 (2006)

    Article  CAS  Google Scholar 

  175. E. Skoplaki, J.A. Palyvos, Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 34, 23–29 (2009)

    Article  CAS  Google Scholar 

  176. E. Skoplaki, A.G. Boudouvis, J.A. Palyvos, A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells 92, 1393–1402 (2008)

    Article  CAS  Google Scholar 

  177. M. Koehl, M. Heck, S. Wiesmeier, J. Wirth, Modeling of the nominal operating cell temperature based on outdoor weathering. Sol. Energy Mater. Sol. Cells 95, 1638–1646 (2011)

    Article  CAS  Google Scholar 

  178. S. Kurtz, K. Whitfield, D. Miller, J. Joyce, J. Wohlgemuth, M. Kempe, et al., Evaluation of high-temperature exposure of rackmounted photovoltaic modules, in 34th IEEE Photovoltaic Specialists Conference (PVSC), (2009), pp. 2399–2404

    Chapter  Google Scholar 

  179. H. Chen, X. Chen, S. Li, H. Ding, Numerical study on the electrical performance of photovoltaic panel with passive cooling of natural ventilation. Int. J. Smart Grid Clean Energy 4(4), 395–400 (2014)

    Google Scholar 

  180. S. Mekhilef, R. Saidur, M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 16, 2920–2925 (2012)

    Article  CAS  Google Scholar 

  181. P. Trinuruk, C. Sorapipatanal, D. Chenvidhya, Effects of air gap spacing between a photovoltaic panel and building envelope on electricity generation and heat gains through a building. Asian J. Energy Environ 8(1 and 2), 73–95 (2007)

    Google Scholar 

  182. C.P.W. Geurts, R.D.J.M. Steenbergen, Full scale measurements of wind loads on stand-off photovoltaic systems, in 5th European & African Conference on Wind Engineering (EACWE), (Florence, Italy, 2009)

    Google Scholar 

  183. R. Velicu, G. Moldovean, I. Scaletchi, B.R. Butuc, Wind loads on an azimuthal photovoltaic platform. Experimental study, in Proceeding of International Conference on Renewable Energies and Power Quality, (Granada, Spain, 2010)

    Google Scholar 

  184. M. Shademan, R.M. Barron, R. Balachandar, H. Hangan, Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations. Can. J. Civ. Eng 41, 728–738 (2014)

    Article  Google Scholar 

  185. A.A. Ogedengbe, H. Hangan, K. Siddiqui, Experimental investigation of wind effects on a standalone photovoltaic (PV) module. Renew. Energy 78, 657–665 (2015)

    Article  Google Scholar 

  186. D. Goossens, E. Van Kerschaever, Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy 66(4), 277–289 (1999)

    Article  Google Scholar 

  187. H.A. Kazem, M.T. Chaichan, A.H.A. Al-Waeli, K. Mani, Effect of shadows on the performance of solar photovoltaic, in Mediterranean Green Buildings & Renewable Energy, (2017), pp. 379–385. https://doi.org/10.1007/978-3-319-30746-6_27

    Chapter  Google Scholar 

  188. U.S. Energy Information Administration, International energy statistics—total electricity installed capacity (2010, Aug)

    Google Scholar 

  189. L. Bony, S. Doig, C. Hart, E. Maurer, S. Newman, Achieving low-cost solar PV: Industry workshop recommendations for near-term balance of system cost reductions, Opportunity 1: Efficient design for wind forces, Rocky Mountain Institute, RMI.org, (2010)

    Google Scholar 

  190. C.A. Gueymard, The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 76(4), 423–453 (2004)

    Article  Google Scholar 

  191. H. Li, W. Ma, X. Wang, Y. Lian, Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study. Renew. Energy 36, 1944 (2011)

    Article  Google Scholar 

  192. C.A. Gueymard, Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol. Energy 83(3), 432–444 (2009)

    Article  CAS  Google Scholar 

  193. A.I. Kudish, E.G. Evseev, The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density. Renew. Energy 36, 1854 (2010)

    Article  Google Scholar 

  194. M.T. Chaichan, H.A. Kazem, A.A. Kazem, I. Abaas Kh, K.A.H. Al-Asadi, The effect of environmental conditions on concentrated solar system in desertec weathers. Int. J. Sci. Eng. Res. 6(5), 850–856 (2015)

    Google Scholar 

  195. M.T. Chaichan, K.I. Abass, H.A. Kazem, Dust and pollution deposition impact on a solar chimney performance. Int. Res. J. Adv. Eng. Sci 3(1), 127–132 (2018)

    Google Scholar 

  196. H.A. Kazem, M.T. Chaichan, A.H.A. Alwaeli, The impact of dust’s physical properties on photovoltaic modules outcomes, Solar energy conference, London UK, 2018

    Google Scholar 

  197. M.T. Chaichan, K.I. Abass, H.A. Kazem, Energy yield loss caused by dust and pollutants deposition on concentrated solar power plants in Iraq weathers. Int. Res. J. Adv. Eng. Sci 3(1), 160–169 (2018)

    Google Scholar 

  198. H.K. Eliminir, A.E. Ghitas, R.H. Hamid, F.E. Hussainy, M.M. Beheary, K.M. Abdel-Moneim, Effect of dust on the transparent cover of solar collectors. Energ. Conver. Manage. 47, 3192–3203 (2006)

    Article  CAS  Google Scholar 

  199. H. Jiang, L. Lu, K. Sun, Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 45, 4299–4304 (2011)

    Article  CAS  Google Scholar 

  200. M.C. Peel, B.L. Finlayson, T.A. McMahon, Updated world map of the Köppen- Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007)

    Article  Google Scholar 

  201. D. Goosens, E.V. Kerschaever, Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy 66, 277–289 (1999)

    Article  Google Scholar 

  202. R.T.A. Hamdi, S.H. Hafed, M.T. Chaichan, H.A. Kazem, Dust impact on the photovoltaic outcomes. Int. J. Comput. Appl. Sci 5(2), 385–390 (2018)

    Google Scholar 

  203. M.T. Chaichan, H.A. Kazem, Effect of sand, ash and soil on photovoltaic performance: An experimental study. Int. J. Sci. Eng. Sci 1(2), 27–32 (2017)

    Google Scholar 

  204. M.T. Chaichan, B.A. Mohammed, H.A. Kazem, Effect of pollution and cleaning on photovoltaic performance based on experimental study. Int. J. Sci. Eng. Res. 6(4), 594–601 (2015)

    Google Scholar 

  205. H. Hottel, B. Woertz, Performance of flat-plate solar-heat collectors. Trans. Am. Soc. Mech. Eng. (USA) 64, 91 (1942)

    Google Scholar 

  206. B. Nimmo, S.A.M. Said, Effects of dust on the performance of thermal and photovoltaic flat plate collectors in Saudi Arabia—preliminary results, in Proceedings of the 2nd Miami International Conference on Alternative Energy Sources, ed. by T. N. Vezirogluv, (1979, Dec 10–13), pp. 223–225

    Google Scholar 

  207. A. Salim, F. Huraib, N. Eugenio, PV power-study of system options and optimization, in Proceedings of the 8th European PV Solar Energy Conference, (1988)

    Google Scholar 

  208. A. Maghrabi, B. Alharbi, N. Tapper, Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos. Environ. 45(13), 2164–2173 (2011)

    Article  CAS  Google Scholar 

  209. F. Wakim, Introduction of PV Power Generation to Kuwait, Kuwait Institute for Scientific Researchers [Report No. 440] (1981)

    Google Scholar 

  210. A.A.M. Sayigh, Effect of dust on flat plate collectors, in Sun: Mankind’s Future Source of Energy; Proceedings of the International Solar Energy Congress, New Delhi, ed. by F. de Winter, M. Cox, vol. 2, (Pergamon Press, New York, 1978), pp. 960–964

    Chapter  Google Scholar 

  211. A.A.M. Sayigh, S. Al-Jandal, H. Ahmed, Dust effect on solar flat surfaces devices in Kuwait. Proceedings of the workshop on the physics of non-conventional energy sources and materials science for energy, ICTP, Triest, Italy. pp. 353–67, 1985

    Google Scholar 

  212. F. Touati, M. Al-Hitmi, H. Bouchech, Towards understanding the effects of climatic and environmental factors on solar PV performance in Arid Desert Regions (Qatar) for various PV technologies”, World renewable energy congress, Indonesia, international conference on renewable energy and energy efficiency, Bali, Indonesia, 17–19 Oct 2011

    Google Scholar 

  213. F. Touati, A. Massoud, J. Abu Hamad, S.A. Saeed, Effects of environmental and climatic conditions on PV efficiency in Qatar, International conference on renewable energies and power quality (ICREPQ’13), Bilbao (Spain), 20–22 March, 2013

    Google Scholar 

  214. Z.A. Darwish, H.A. Kazem, K. Sopian, M.A. Al-Goul, M.T. Chaichan, Impact of some environmental variables with dust on solar photovoltaic (PV) performance: Review and research status. Int. J. Energy Environ. 7(4), 152 (2013)

    Google Scholar 

  215. Z.A. Darwish, H.A. Kazem, K. Sopian, M.A. Al-Goul, H. Alawadhi, Effect of dust pollutant type on photovoltaic performance. Renew. Sustain. Energy Rev. 41, 735–744 (2015)

    Article  Google Scholar 

  216. H.A. Kazem, T. Khatib, K. Sopian, F. Buttinger, W. Elmenreich, A.S. Albusaidi, Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements. Int. J. Renew. Energy Res 3(4), 850–853 (2013)

    Google Scholar 

  217. H.A. Kazem, M.T. Chaichan, S.A. Saif, A.A. Dawood, S.A. Salim, A.A. Rashid, A.A. Alwaeli, Experimental investigations of dust type effect on photovoltaic systems in North Region, Oman. Int. J. Sci. Eng. Res. 6(7), 293–298 (2015)

    Google Scholar 

  218. H.A. Kazem, M.T. Chaichan, Experimental effect of dust physical properties on photovoltaic module in northern Oman. Sol. Energy 139, 68–80 (2016). https://doi.org/10.1016/j.solener.2016.09.019

    Article  CAS  Google Scholar 

  219. A.A. Kazem, M.T. Chaichan, H.A. Kazem, Effect of dust on photovoltaic utilization in Iraq: Review article. Renew. Sustain. Energy Rev. 37, 734–749 (2014)

    Article  Google Scholar 

  220. S.P. Sukhatme, Solar Energy: Principles of Thermal Collection and Storage (Tata McGraw-Hill, New Delhi, 2003)

    Google Scholar 

  221. N. Nahar, J. Gupta, Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India. Sol. Wind Technol. 7, 237–243 (1990)

    Article  Google Scholar 

  222. Al-Sayyah, J. Stark, T. Abuhamed, W. Weisinger, M. Horenstein, M.K. Mazumder, Energy yield loss caused by dust deposition in solar power plants, Proc. 2012 joint electrostatics conference, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Waeli, A.H.A., Kazem, H.A., Chaichan, M.T., Sopian, K. (2019). The Impact of Climatic Conditions on PV/PVT Outcomes. In: Photovoltaic/Thermal (PV/T) Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-27824-3_5

Download citation

Publish with us

Policies and ethics