Skip to main content

Spatial Time Series Prediction Using Advanced BN Models—An Application Perspective

  • Chapter
  • First Online:
Book cover Enhanced Bayesian Network Models for Spatial Time Series Prediction

Part of the book series: Studies in Computational Intelligence ((SCI,volume 858))

  • 888 Accesses

Abstract

While the previous chapters keep focus on the working principles and performances of variants of enhanced BN models, this chapter presents the BN models from the perspective of various applications of spatial time series  prediction. Eight different application domains including medical imaging, remote sensing , transportation, bio-informatics, homeland security, environment/ecology, finance/economy, etc. have been considered for this purpose. Later, the chapter also discusses on the synergism of enhanced BN models to handle more complex ST prediction scenarios in real life. We anticipate that the chapter will help researchers to find out several interesting research issues yet to be resolved and will also encourage them to further explore the intrinsic power of BNs to tackle the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aburas, M.M., Ho, Y.M., Ramli, M.F., Ash’aari, Z.H.: The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. Int. J. Appl. Earth Obs. Geoinf. 52, 380–389 (2016)

    Article  Google Scholar 

  2. Al-sharif, A.A., Pradhan, B.: Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models. Appl. Spat. Anal. Policy 9(2), 213–231 (2016)

    Article  Google Scholar 

  3. Bahram, M., Peay, K.G., Tedersoo, L.: Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205(4), 1454–1463 (2015)

    Article  Google Scholar 

  4. Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A.C., Angell, H., Fredriksen, T., Lafontaine, L., Berger, A., et al.: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4), 782–795 (2013)

    Article  Google Scholar 

  5. Broennimann, O., Mráz, P., Petitpierre, B., Guisan, A., Müller-Schärer, H.: Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J. Biogeogr. 41(6), 1126–1136 (2014)

    Article  Google Scholar 

  6. Cramb, S.M., Baade, P.D., White, N.M., Ryan, L.M., Mengersen, K.L.: Inferring lung cancer risk factor patterns through joint Bayesian spatio-temporal analysis. Cancer Epidemiol. 39(3), 430–439 (2015)

    Article  Google Scholar 

  7. Das, M., Ghosh, S.K.: Deep-STEP: a deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci. Remote Sens. Lett. 13(12), 1984–1988 (2016)

    Article  Google Scholar 

  8. Das, M., Ghosh, S.K.: BESTED: an exponentially smoothed spatial Bayesian analysis model for spatio-temporal prediction of daily precipitation. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 55. ACM (2017)

    Google Scholar 

  9. Das, M., Ghosh, S.K.: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 10(12), 5228–5236 (2017)

    Article  Google Scholar 

  10. Das, M., Ghosh, S.K.: Measuring Moran’s I in a cost-efficient manner to describe a land-cover change pattern in large-scale remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 10(6), 2631–2639 (2017)

    Article  Google Scholar 

  11. Das, M., Ghosh, S.K.: semBnet: a semantic Bayesian network for multivariate prediction of meteorological time series data. Pattern Recognit. Lett. 93, 192–201 (2017)

    Article  Google Scholar 

  12. Das, M., Ghosh, S.K.: Spatio-temporal autocorrelation analysis for regional land-cover change detection from remote sensing data. In: Proceedings of the Fourth ACM IKDD Conferences on Data Sciences, p. 8. ACM (2017)

    Google Scholar 

  13. Das, M., Ghosh, S.K.: Spatio-temporal prediction of meteorological time series data: an approach based on spatial Bayesian network (SpaBN). In: International Conference on Pattern Recognition and Machine Intelligence, pp. 615–622. Springer, Berlin (2017)

    Google Scholar 

  14. Das, M., Ghosh, S.K.: Spatio-temporal prediction under scarcity of influencing variables: a hybrid probabilistic graph-based approach. In: 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR), pp. 1–6. IEEE (2017)

    Google Scholar 

  15. Das, M., Ghosh, S.K.: Data-driven approaches for meteorological time series prediction: a comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognit. Lett. 105, 155–164 (2018)

    Article  Google Scholar 

  16. Das, M., Ghosh, S.K.: Space-time prediction of high resolution raster data: an approach based on spatio-temporal Bayesian network (STBN). In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, pp. 129–135. ACM (2019)

    Google Scholar 

  17. Das, M., Ghosh, S.K.: Reducing Parameter Value Uncertainty in Discrete Bayesian Network Learning: A Semantic Fuzzy Bayesian Approach. IEEE Transactions on Emerging Topics in Computational Intelligence (2019) [in press]. https://doi.org/10.1109/TETCI.2019.2939582

  18. Das, M., Ghosh, S.K., Chowdary, V., Saikrishnaveni, A., Sharma, R.: A probabilistic nonlinear model for forecasting daily water level in reservoir. Water Resour. Manag. 30(9), 3107–3122 (2016)

    Article  Google Scholar 

  19. Das, M., Ghosh, S.K., Gupta, P., Chowdary, V.M., Nagaraja, R., Dadhwal, V.K.: FORWARD: A model for forecasting reservoir water dynamics using spatial Bayesian network (SpaBN). IEEE Transactions on Knowledge and Data Engineering 29(4), 842–855 (2017)

    Article  Google Scholar 

  20. Du, P., Xia, J., Du, Q., Luo, Y., Tan, K.: Evaluation of the spatio-temporal pattern of urban ecological security using remote sensing and GIS. Int. J. Remote Sens. 34(3), 848–863 (2013)

    Article  Google Scholar 

  21. Dubé, J., Legros, D.: A spatio-temporal measure of spatial dependence: an example using real estate data. Papers Reg. Sci. 92(1), 19–30 (2013)

    Google Scholar 

  22. Fairley, I., Smith, H.C., Robertson, B., Abusara, M., Masters, I.: Spatio-temporal variation in wave power and implications for electricity supply. Renew. Energy 114, 154–165 (2017)

    Article  Google Scholar 

  23. He, D., Dushoff, J., Eftimie, R., Earn, D.J.: Patterns of spread of influenza A in Canada. Proc. R. Soc. B: Biol. Sci. 280(1770), 20131174 (2013)

    Article  Google Scholar 

  24. Holly, S., Pesaran, M.H., Yamagata, T.: A spatio-temporal model of house prices in the USA. J. Econom. 158(1), 160–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hormuth II, D.A., Weis, J.A., Barnes, S.L., Miga, M.I., Rericha, E.C., Quaranta, V., Yankeelov, T.E.: Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys. Biol. 12(4), 046006 (2015)

    Article  Google Scholar 

  26. Kang, H.W., Kang, H.B.: Prediction of crime occurrence from multi-modal data using deep learning. PloS One 12(4), e0176244 (2017)

    Article  MathSciNet  Google Scholar 

  27. Kloog, I., Nordio, F., Zanobetti, A., Coull, B.A., Koutrakis, P., Schwartz, J.D.: Short term effects of particle exposure on hospital admissions in the Mid-Atlantic states: a population estimate. PloS One 9(2), e88578 (2014)

    Article  Google Scholar 

  28. Kuethe, T.H., Pede, V.O.: Regional housing price cycles: a spatio-temporal analysis using US state-level data. Reg. Stud. 45(5), 563–574 (2011)

    Article  Google Scholar 

  29. Lai, P.C., Chow, C.B., Wong, H.T., Kwong, K.H., Kwan, Y.W., Liu, S.H., Tong, W.K., Cheung, W.K., Wong, W.L.: An early warning system for detecting H1N1 disease outbreak-a spatio-temporal approach. Int. J. Geograph. Inform. Sci. 29(7), 1251–1268 (2015)

    Article  Google Scholar 

  30. Latombe, G., Fortin, D., Parrott, L.: Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolf. J. Animal Ecol. 83(1), 185–198 (2014)

    Article  Google Scholar 

  31. Law, J., Quick, M., Chan, P.: Bayesian spatio-temporal modeling for analysing local patterns of crime over time at the small-area level. J. Quant. Criminol. 30(1), 57–78 (2014)

    Article  Google Scholar 

  32. Liu, Y., Lu, S., Chen, Y.: Spatio-temporal change of urban-rural equalized development patterns in China and its driving factors. J. Rural Stud. 32, 320–330 (2013)

    Article  Google Scholar 

  33. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Transp. Syst. 17(2), 557–569 (2015)

    Article  Google Scholar 

  34. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2014)

    Google Scholar 

  35. Morley, P.J., Donoghue, D.N., Chen, J.C., Jump, A.S.: Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution. Ecol. Inform. 43, 106–115 (2018)

    Article  Google Scholar 

  36. Rahman, A., Aggarwal, S.P., Netzband, M., Fazal, S.: Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE J. Sel. Top. Appl. Earth Obs. and Remote Sens. 4(1), 56–64 (2010)

    Article  Google Scholar 

  37. Rahman, M.M., Feng, Y., Yankeelov, T.E., Oden, J.T.: A fully coupled space-time multiscale modeling framework for predicting tumor growth. Comput. Methods Appl. Mech. Eng. 320, 261–286 (2017)

    Article  MathSciNet  Google Scholar 

  38. Salmon, B.P., Olivier, J.C., Wessels, K.J., Kleynhans, W., Van den Bergh, F., Steenkamp, K.C.: Unsupervised land cover change detection: meaningful sequential time series analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(2), 327–335 (2010)

    Article  Google Scholar 

  39. Sankarasubramanian, A., Sabo, J., Larson, K., Seo, S., Sinha, T., Bhowmik, R., Vidal, A.R., Kunkel, K., Mahinthakumar, G., Berglund, E., et al.: Synthesis of public water supply use in the united states: Spatio-temporal patterns and socio-economic controls. Earth’s Future 5(7), 771–788 (2017)

    Article  Google Scholar 

  40. Scheepens, R., Hurter, C., Van De Wetering, H., Van Wijk, J.J.: Visualization, selection, and analysis of traffic flows. IEEE Trans. Vis. Comput. Graph. 22(1), 379–388 (2015)

    Article  Google Scholar 

  41. Schuessele, C., Hoernstein, S.N., Mueller, S.J., Rodriguez-Franco, M., Lorenz, T., Lang, D., Igloi, G.L., Reski, R.: Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss. New Phytol. 209(3), 1014–1027 (2016)

    Article  Google Scholar 

  42. Smith, T.E., Wu, P.: A spatio-temporal model of housing prices based on individual sales transactions over time. J. Geograph. Syst. 11(4), 333 (2009)

    Article  Google Scholar 

  43. Subasinghe, S., Estoque, R., Murayama, Y.: Spatiotemporal analysis of urban growth using GIS and remote sensing: a case study of the Colombo metropolitan area, Sri Lanka. ISPRS Int. J. Geo-Inf. 5(11), 197 (2016)

    Article  Google Scholar 

  44. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. Part C: Emerg. Technol. 43, 3–19 (2014)

    Article  Google Scholar 

  45. Wu, Y.J., Chen, F., Lu, C.T., Yang, S.: Urban traffic flow prediction using a spatio-temporal random effects model. J. Intell. Transp. Syst. 20(3), 282–293 (2016)

    Article  Google Scholar 

  46. Yang, X., Liu, Z.: Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Comput. Environ. Urban Syst. 29(5), 524–540 (2005)

    Article  Google Scholar 

  47. Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng, C., Zeng, J.: A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44(4), e32–e32 (2015)

    Article  Google Scholar 

  48. Zheng, L., Yang, H.L., Bi, Z.W., Kou, Z.Q., Zhang, L.Y., Zhang, A.H., Yang, L., Zhao, Z.T.: Epidemic characteristics and spatio-temporal patterns of scrub typhus during 2006–2013 in Tai’an, Northern China. Epidemiol. Infect. 143(11), 2451–2458 (2015)

    Article  Google Scholar 

  49. Zhuang, Y., Almeida, M., Morabito, M., Ding, W.: Crime hot spot forecasting: a recurrent model with spatial and temporal information. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 143–150. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monidipa Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M., Ghosh, S.K. (2020). Spatial Time Series Prediction Using Advanced BN Models—An Application Perspective. In: Enhanced Bayesian Network Models for Spatial Time Series Prediction. Studies in Computational Intelligence, vol 858. Springer, Cham. https://doi.org/10.1007/978-3-030-27749-9_8

Download citation

Publish with us

Policies and ethics