Skip to main content

Lipidomics of Adipogenic Differentiation of Mesenchymal Stem Cells

  • Chapter
  • First Online:
Genomics, Proteomics, and Metabolomics

Abstract

Mesenchymal stem cells are defined as multipotent cells which have the ability to differentiate into various types of cell. Under the adipogenic stimuli, mesenchymal stem cells possess the ability to differentiate into adipocytes through adipogenesis processes. Adipogenesis is defined as the process of pre-adipocyte differentiation to mature adipocytes. Adipocytes are a type of cells with the ability to maintain energy balance through storage excess energy. However, several abnormal conditions including various types of disease can result from energy imbalance. Accordingly, obesity as a worldwide problem is one of the prevalent outcomes of increasing fat mass and there is a global effort to combat it. Accumulation of excess fat in adipocytes leads to adipocyte hypertrophy. Consequently, hypertrophic adipocyte can secrete several endocrine factors that induce hyperplasia (one of the major causes of obesity) and signal proliferation and differentiation of pre-adipocytes. Therefore, it has been demonstrated that adipogenic differentiation of mesenchymal stem cells undergoes different signaling pathways with various regulatory factors, while elucidation of these controllers can help scientists to develop more effective treatments for obesity and other related diseases. Therein, lipids have been presented as pivotal mediators of cellular processes and could induce several signaling pathways. Additionally, lipids are fundamental metabolites which use as cellular biomarkers to indicate different biological states and cellular activity. Total content of lipids in cells is known as lipidome. Any slight changes in the lipidome reflect different cellular changes. Tracking and comparing these changes between different stages of mesenchymal stem cell differentiation can provide identification of essential metabolic pathways involved in adipogenesis. In this context, lipidomics has been introduced as an emerging field of stem cell and regenerative medicine. Through the large-scale analysis of lipids, lipidomics provides more efficient methods to the investigation of adipocytes, and also prediction of the prognosis of obesity and its prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAT:

Brown adipose tissue

BMI:

Body mass index

C/EBPα:

CCAAT/enhancer binding proteins

C1:

Carbon 1

C2:

Carbon 2

C3:

Carbon 3

CKI:

Cyclin-dependent kinase inhibitors

CoA:

Coenzyme A

Dex:

Dexamethasone

FA:

Fatty acids

GD:

Growth arrest

GL:

Glycerolipids

hMSCs:

Human mesenchymal stem cells

IBMX:

Isobutylmethylxanthine

IBMX:

Isobutyl-methylxanthine

IL6:

Interleukin 6

ISCT:

International Society for Cell Therapy

LD:

Lipid droplets

MCE:

Clonal expansion

MSCs:

Mesenchymal stem cells

MVA:

Mevalonic acid

PG:

Prostaglandins

PPARγ:

Peroxisome proliferator-activated receptor γ

PPARÏ’:

Peroxisome proliferator-activated receptor Ï’

PSCs:

Pluripotent stem cells

SREBP:

Sterol regulatory element binding protein

TAG:

Triacylglycerol

TG:

Triglycerides

TGF-β3:

Transforming growth factor-β3

TNFα:

Tumor necrosis factor α

WAT:

White adipose tissue

References

  1. Huang C, Freter C. Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci. 2015;16(1):924–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rolim AE, et al. Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene. 2015;554:131–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kiamehr M, et al. Lipidomic profiling of patient-specific iPSC-derived hepatocyte-like cells. Dis Model Mech. 2017;10(9):1141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pébay A, Wong RC. Lipidomics of stem cells. New York: Springer; 2017.

    Book  Google Scholar 

  5. Bieberich E, Wang G. Bioactive lipids in stem cell differentiation, in embryonic stem cells-differentiation and pluripotent alternatives. London: IntechOpen; 2011.

    Google Scholar 

  6. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bieberich E. It’s a lipid’s world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res. 2012;37(6):1208–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Meyer FJM, et al. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions. Biophys J. 2010;99(11):3629–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. van Meer G. Cellular lipidomics. EMBO J. 2005;24(18):3159–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Harkewicz R, Dennis EA. Applications of mass spectrometry to lipids and membranes. Annu Rev Biochem. 2011;80:301–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dowhan W, Mileykovskaya E, Bogdanov M. Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta. 2004;1666(1–2):19–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4(7):594.

    Article  CAS  PubMed  Google Scholar 

  13. Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 2010;11(8):593.

    Article  CAS  PubMed  Google Scholar 

  14. Vance JE, Vance DE. Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier; 2008.

    Google Scholar 

  15. Ridgway N, McLeod R. Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier; 2015.

    Google Scholar 

  16. Dowhan W, Mileykovskaya E, Bogdanov M. Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta Biomembr. 2004;1666(1):19–39.

    Article  CAS  Google Scholar 

  17. Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281.

    Article  CAS  PubMed  Google Scholar 

  18. Chatgilialoglu A, et al. Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta. Stem Cell Res Ther. 2017;8(1):31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Campos AM, et al. Lipidomics of mesenchymal stromal cells: understanding the adaptation of phospholipid profile in response to pro-inflammatory cytokines. J Cell Physiol. 2016;231(5):1024–32.

    Article  CAS  PubMed  Google Scholar 

  20. Goodarzi P, et al. Therapeutic abortion and ectopic pregnancy: alternative sources for fetal stem cell research and therapy in Iran as an Islamic country. Cell Tissue Bank. 2019;20(1):11–24.

    Article  PubMed  Google Scholar 

  21. Shirian S, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly (ε-caprolactone) scaffold. Mol Neurobiol. 2016;53(8):5278–87.

    Article  CAS  PubMed  Google Scholar 

  22. Larijani B, et al. Human fetal skin fibroblasts: extremely potent and allogenic candidates for treatment of diabetic wounds. Med Hypotheses. 2015;84(6):577–9.

    Article  CAS  PubMed  Google Scholar 

  23. Goodarzi P, et al. Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islam Repub Iran. 2015;29:168.

    PubMed  PubMed Central  Google Scholar 

  24. Goodarzi P, et al. Stem cell therapy for treatment of epilepsy. Acta Med Iran. 2014;52(9):651–5.

    PubMed  Google Scholar 

  25. Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int. 2018;2018:3057624.

    PubMed  PubMed Central  Google Scholar 

  26. Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int. 2017;2017:5173732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Larijani B, et al. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation. In: Stem cells and good manufacturing practices. New York: Springer; 2014. p. 123–36.

    Google Scholar 

  28. Derakhshanrad N, et al. Case report: combination therapy with mesenchymal stem cells and granulocyte-colony stimulating factor in a case of spinal cord injury. Basic Clin Neurosci. 2015;6(4):299.

    PubMed  PubMed Central  Google Scholar 

  29. Goodarzi P, et al. Adipose tissue-derived stromal cells for wound healing. Adv Exp Med Biol. 2018;1119:133–49.

    Article  CAS  PubMed  Google Scholar 

  30. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226(6):507–20.

    Article  CAS  Google Scholar 

  31. Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells. 2004;6(4):369–74.

    Article  CAS  PubMed  Google Scholar 

  32. Mahmood R, Shaukat M, Choudhery MS. Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow. AIMS Cell Tissue Eng. 2018;2(2):78–90.

    Article  Google Scholar 

  33. Ma J, et al. Comparative analysis of mesenchymal stem cells derived from amniotic membrane, umbilical cord, and chorionic plate under serum-free condition. Stem Cell Res Ther. 2019;10(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheykhhasan M, et al. Mesenchymal stem cells as a valuable agent in osteoarthritis treatment. Stem Cell Investig. 2018;5:41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Phelps J, et al. Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int. 2018;2018:9415367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Anderson HJ, et al. Mesenchymal stem cell fate: applying biomaterials for control of stem cell behavior. Front Bioeng Biotechnol. 2016;4:38.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sekiya I, et al. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res. 2004;19(2):256–64.

    Article  CAS  PubMed  Google Scholar 

  38. Kilroy G, et al. Isolation of murine adipose-derived stromal/stem cells for adipogenic differentiation or flow cytometry-based analysis. Methods Mol Biol. 2018;1773:137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaiswal N, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64(2):295–312.

    Article  CAS  PubMed  Google Scholar 

  40. Song IH, Caplan AI, Dennis JE. In vitro dexamethasone pretreatment enhances bone formation of human mesenchymal stem cells in vivo. J Orthop Res. 2009;27(7):916–21.

    Article  CAS  PubMed  Google Scholar 

  41. Barry F, et al. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  42. Mauck R, Yuan X, Tuan R. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr Cartil. 2006;14(2):179–89.

    Article  CAS  Google Scholar 

  43. Fan L, et al. Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin. J Orthop Res. 2019;37(6):1387–97.

    Article  CAS  PubMed  Google Scholar 

  44. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242–58.

    Article  CAS  PubMed  Google Scholar 

  45. Villarroya F, et al. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26.

    Article  CAS  PubMed  Google Scholar 

  46. Smitka K, Marešová D. Adipose tissue as an endocrine organ: an update on pro-inflammatory and anti-inflammatory microenvironment. Prague Med Rep. 2015;116(2):87–111.

    Article  PubMed  Google Scholar 

  47. Churm R, et al. Ghrelin function in human obesity and type 2 diabetes: a concise review. Obes Rev. 2017;18(2):140–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gustafson B, et al. Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab. 2015;26(4):193–200.

    Article  CAS  PubMed  Google Scholar 

  49. Reisin E, Owen J. Treatment: special conditions: metabolic syndrome: obesity and the hypertension connection. J Am Soc Hypertens. 2015;9(2):156–9.

    Article  PubMed  Google Scholar 

  50. Chappell VA, et al. Tetrabromobisphenol-A promotes early adipogenesis and lipogenesis in 3T3-L1 cells. Toxicol Sci. 2018;166(2):332–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tung Y-C, et al. Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J Food Drug Anal. 2017;25(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  52. De Sa PM, et al. Transcriptional regulation of adipogenesis. Compr Physiol. 2017;7:635–74.

    Google Scholar 

  53. Tencerova M, Kassem M. The bone marrow-derived stromal cells: commitment and regulation of adipogenesis. Front Endocrinol. 2016;7:127.

    Article  Google Scholar 

  54. Rony RIK, et al. Differential expression of PPARγ and CHOP-10 during Adipogenic differentiation of human bone marrow derived mesenchymal stem cells. FASEB J. 2018;32(1_suppl):lb17.

    Google Scholar 

  55. Fu M, et al. A nuclear receptor atlas: 3T3-L1 adipogenesis. Mol Endocrinol. 2005;19(10):2437–50.

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz-Ojeda F, et al. Cell models and their application for studying adipogenic differentiation in relation to obesity: a review. Int J Mol Sci. 2016;17(7):1040.

    Article  PubMed Central  CAS  Google Scholar 

  57. Forni MF, et al. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells. 2016;34(3):743–55.

    Article  CAS  PubMed  Google Scholar 

  58. Moreno-Navarrete JM, Fernández-Real JM. Adipocyte differentiation. In: Adipose tissue biology. New York: Springer; 2017. p. 69–90.

    Chapter  Google Scholar 

  59. Yuan Z, et al. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2016;11(3):216–25.

    Article  CAS  PubMed  Google Scholar 

  60. Bennett CN, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem. 2002;277(34):30998–1004.

    Article  CAS  PubMed  Google Scholar 

  61. Gross B, et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36.

    Article  CAS  PubMed  Google Scholar 

  62. Salazar-Roa M, Malumbres M. Fueling the cell division cycle. Trends Cell Biol. 2017;27(1):69–81.

    Article  CAS  PubMed  Google Scholar 

  63. Chiurchiù V, Leuti A, Maccarrone M. Bioactive lipids and chronic inflammation: managing the fire within. Front Immunol. 2018;9:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nagao K, Yanagita T. Bioactive lipids in metabolic syndrome. Prog Lipid Res. 2008;47(2):127–46.

    Article  CAS  PubMed  Google Scholar 

  65. Fahy E, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50(Suppl):S9–S14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Fahy E, et al. A comprehensive classification system for lipids. Eur J Lipid Sci Technol. 2005;107(5):337–64.

    Article  CAS  Google Scholar 

  67. Holm R. Bridging the gaps between academic research and industrial product developments of lipid-based formulations. Adv Drug Deliv Rev, 2019. https://doi.org/10.1016/j.addr.2019.01.009.

    Article  CAS  PubMed  Google Scholar 

  68. Jones SF, Infante JR. Molecular pathways: fatty acid synthase. Clin Cancer Res. 2015;21(24):5434–8.

    Article  CAS  PubMed  Google Scholar 

  69. Hashimoto M, Hossain S. Fatty acids: from membrane ingredients to signaling molecules, in biochemistry and health benefits of fatty acids. London: IntechOpen; 2018.

    Google Scholar 

  70. Han X, Zhou Y. Application of lipidomics in nutrition research. In: Metabolomics as a tool in nutrition research. Amsterdam: Elsevier; 2015. p. 63–84.

    Chapter  Google Scholar 

  71. Matsumaru T, et al. Synthesis of glycerolipids containing simple linear acyl chains or aromatic rings and evaluation of their Mincle signaling activity. Chem Commun. 2019;55(5):711–4.

    Article  CAS  Google Scholar 

  72. Khoury S, et al. Quantification of lipids: model, reality, and compromise. Biomol Ther. 2018;8(4):174.

    Google Scholar 

  73. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50.

    Article  CAS  PubMed  Google Scholar 

  74. Merrill AH Jr. Sphingolipids. In: Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier; 2008. p. 363–97.

    Chapter  Google Scholar 

  75. Chun J, Hartung H-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33(2):91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dickson RC, Lester RL. Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta. 2002;1583(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  77. Fahy E, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46:839–61.

    Article  CAS  PubMed  Google Scholar 

  78. Raetz CR, et al. Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res. 2009;50(Suppl):S103–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Pfeifer BA, Khosla C. Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev. 2001;65(1):106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lim Y, Go M, Yew W. Exploiting the biosynthetic potential of type III polyketide synthases. Molecules. 2016;21(6):806.

    Article  PubMed Central  CAS  Google Scholar 

  81. Demel RA, De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976;457(2):109–32.

    Article  CAS  PubMed  Google Scholar 

  82. Wolstenholme GEW, O’Connor CM. Quinones in electron transport, vol. 947. Hoboken: Wiley; 2009.

    Google Scholar 

  83. Lydic TA, Goo Y-H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med. 2018;7(1):4–4.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhao YY, et al. Lipidomics applications for disease biomarker discovery in mammal models. Biomark Med. 2015;9(2):153–68.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao YY, Cheng XL, Lin RC. Lipidomics applications for discovering biomarkers of diseases in clinical chemistry. Int Rev Cell Mol Biol. 2014;313:1–26.

    Article  CAS  PubMed  Google Scholar 

  86. Liaw L, et al. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues. J Cell Biochem. 2016;117(9):2182–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang J-Y, et al. Regulation of adipogenesis by medium-chain fatty acids in the absence of hormonal cocktail. J Nutr Biochem. 2009;20(7):537–43.

    Article  CAS  PubMed  Google Scholar 

  88. Kim H-K, et al. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr. 2006;136(12):2965–9.

    Article  CAS  PubMed  Google Scholar 

  89. Dwyer JR, et al. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem. 2007;282(12):8959–68.

    Article  CAS  PubMed  Google Scholar 

  90. Eaton S. Multiple roles for lipids in the hedgehog signalling pathway. Nat Rev Mol Cell Biol. 2008;9(6):437.

    Article  CAS  PubMed  Google Scholar 

  91. Gregg EW, Shaw JE. Global health effects of overweight and obesity. N Engl J Med. 2017;377(1):80–1.

    Article  PubMed  Google Scholar 

  92. Dixon J. The global burden of obesity and diabetes. In: Minimally invasive bariatric surgery. New York: Springer; 2015. p. 1–6.

    Google Scholar 

  93. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world—a growing challenge. N Engl J Med. 2007;356(3):213–5.

    Article  CAS  PubMed  Google Scholar 

  94. Low S, Chin MC, Deurenberg-Yap M. Review on epidemic of obesity. Ann Acad Med Singap. 2009;38(1):57.

    PubMed  Google Scholar 

  95. Lavie CJ, et al. Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol. 2018;15(1):45.

    Article  PubMed  Google Scholar 

  96. Hurt RT, et al. Obesity epidemic: overview, pathophysiology, and the intensive care unit conundrum. J Parenter Enter Nutr. 2011;35(5_suppl):4S–13S.

    Article  CAS  Google Scholar 

  97. Arnold M, et al. Obesity and cancer: an update of the global impact. Cancer Epidemiol. 2016;41:8–15.

    Article  PubMed  Google Scholar 

  98. Collaborators GO. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.

    Article  Google Scholar 

  99. Rennie K, Jebb S. Prevalence of obesity in Great Britain. Obes Rev. 2005;6(1):11–2.

    Article  CAS  PubMed  Google Scholar 

  100. Husky MM, et al. Differential associations between excess body weight and psychiatric disorders in men and women. J Women’s Health. 2018;27(2):183–90.

    Article  Google Scholar 

  101. Webb P, et al. Hunger and malnutrition in the 21st century. BMJ. 2018;361:k2238.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jacob CS, de Alba Carolina T. An evidence-based review of dietary supplements on inflammatory biomarkers in obesity. Curr Res Nutr Food Sci J. 2018;6(2):284–93.

    Article  Google Scholar 

  103. Khan M. Complications of cryolipolysis: paradoxical adipose hyperplasia (PAH) and beyond. Aesthet Surg J. 2019;39(8):NP334–42.

    Article  PubMed  Google Scholar 

  104. Considine RV, et al. Paracrine stimulation of preadipocyte-enriched cell cultures by mature adipocytes. Am J Physiol Endocrinol Metab. 1996;270(5):E895–9.

    Article  CAS  Google Scholar 

  105. Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36.

    Article  CAS  PubMed  Google Scholar 

  106. Cook D, Genever P. Regulation of mesenchymal stem cell differentiation, in transcriptional and translational regulation of stem cells. Adv Exp Med Biol. 2013;786:213–29.

    Article  CAS  PubMed  Google Scholar 

  107. Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep. 2011;7(2):269–91.

    Article  PubMed  Google Scholar 

  108. Ong WK, Sugii S. Adipose-derived stem cells: fatty potentials for therapy. Int J Biochem Cell Biol. 2013;45(6):1083–6.

    Article  CAS  PubMed  Google Scholar 

  109. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  111. Jo J, et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol. 2009;5(3):e1000324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Payab M, et al. Stem cell and obesity: current state and future perspective. Adv Exp Med Biol. 2018;1089:1–22.

    Article  CAS  PubMed  Google Scholar 

  113. Joe AW, et al. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells. 2009;27(10):2563–70.

    Article  CAS  PubMed  Google Scholar 

  114. Matsushita K, Dzau VJ. Mesenchymal stem cells in obesity: insights for translational applications. Lab Investig. 2017;97(10):1158.

    Article  PubMed  Google Scholar 

  115. Niemelä S, et al. Adipose tissue and adipocyte differentiation: molecular and cellular aspects and tissue engineering applications. Top Tissue Eng. 2008;4(1):26.

    Google Scholar 

  116. Cleal L, Aldea T, Chau Y-Y. Fifty shades of white: understanding heterogeneity in white adipose stem cells. Adipocytes. 2017;6(3):205–16.

    Article  Google Scholar 

  117. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53(2):227–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang W, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Matsushita K. Mesenchymal stem cells and metabolic syndrome: current understanding and potential clinical implications. Stem Cells Int. 2016;2016:2892840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Poulos SP, et al. The increasingly complex regulation of adipocyte differentiation. Exp Biol Med. 2016;241(5):449–56.

    Article  CAS  Google Scholar 

  121. Moseti D, Regassa A, Kim W-K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci. 2016;17(1):124.

    Article  PubMed Central  CAS  Google Scholar 

  122. Postle AD. Lipidomics. Curr Opin Clin Nutr Metab Care. 2012;15(2):127–33.

    CAS  PubMed  Google Scholar 

  123. Murphy SA, Nicolaou A. Lipidomics applications in health, disease and nutrition research. Mol Nutr Food Res. 2013;57(8):1336–46.

    Article  CAS  PubMed  Google Scholar 

  124. Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41(11):954–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016;12(11):668.

    Article  CAS  PubMed  Google Scholar 

  126. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12(11):722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lapid K, Graff JM. Form(ul)ation of adipocytes by lipids. Adipocytes. 2017;6(3):176–86.

    Article  CAS  Google Scholar 

  128. de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem. 2008;54(6):945–55.

    Article  PubMed  CAS  Google Scholar 

  129. Hammarstedt A, et al. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev. 2018;98(4):1911–41.

    Article  CAS  PubMed  Google Scholar 

  130. Han X. An update on lipidomics: progress and application in biomarker and drug development. Curr Opin Mol Ther. 2007;9(6):586–91.

    CAS  PubMed  Google Scholar 

  131. Haraszti RA, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5(1):32570.

    Article  PubMed  CAS  Google Scholar 

  132. Nguyen A, et al. Using lipidomics analysis to determine signalling and metabolic changes in cells. Curr Opin Biotechnol. 2017;43:96–103.

    Article  CAS  PubMed  Google Scholar 

  133. Qian S-W, et al. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow. BMC Dev Biol. 2010;10:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mohammadi Z, et al. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells. Iran J Basic Med Sci. 2015;18(3):259–66.

    PubMed  PubMed Central  Google Scholar 

  135. Marquez MP, et al. The role of cellular proliferation in adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Stem Cells Dev. 2017;26(21):1578–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Montacir H, et al. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow Mesenchymal stem cells: towards a next generation of stem cell markers. Stem Cells Dev. 2013;22(23):3100–13.

    Article  CAS  Google Scholar 

  137. Sarantopoulos CN, et al. Elucidating the preadipocyte and its role in adipocyte formation: a comprehensive review. Stem Cell Rev. 2018;14(1):27–42.

    Article  CAS  Google Scholar 

  138. Masoodi M, et al. Lipid signaling in adipose tissue: connecting inflammation & metabolism. Biochim Biophys Acta. 2015;1851(4):503–18.

    Article  CAS  PubMed  Google Scholar 

  139. Lee Y-H, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 2014;1842(3):358–69.

    Article  CAS  PubMed  Google Scholar 

  140. Titz B, et al. Proteomics and lipidomics in inflammatory bowel disease research: from mechanistic insights to biomarker identification. Int J Mol Sci. 2018;19(9):2775.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilany, K. et al. (2019). Lipidomics of Adipogenic Differentiation of Mesenchymal Stem Cells. In: Arjmand, B. (eds) Genomics, Proteomics, and Metabolomics. Stem Cell Biology and Regenerative Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-27727-7_7

Download citation

Publish with us

Policies and ethics