Skip to main content

Heap-Based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms

  • Conference paper
  • First Online:
Cloud Computing and Big Data (JCC&BD 2019)

Abstract

Nowadays, fingerprint is the most used biometric trait for individuals identification. In this area, the state-of-the-art algorithms are very accurate, but when the database contains millions of identities, an acceleration of the algorithm is required. From these algorithms, Minutia Cylinder-Code (MCC) stands out for its good results in terms of accuracy, however its efficiency in computational time is not high. In this work, we propose to use two different parallel platforms to accelerate fingerprint matching process by using MCC: (1) a multi-core server, and (2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary structure to process the global similarity of MCC. As heap-based algorithms are exhaustive (all the elements are accessed), we also explored the use an indexing algorithm to avoid comparing the query against all the fingerprints of the database. Experimental results show an improvement up to 97.15x of speed-up, which is competitive compared to other state-of-the-art algorithms in GPU and FPGA. To the best of our knowledge, this is the first work for fingerprint identification using a Xeon Phi coprocessor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: kNN query processing in metric spaces using GPUs. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 380–392. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23400-2_35

    Chapter  Google Scholar 

  2. Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: Range query processing on single and multi GPU environments. Comput. Electr. Eng. 39(8), 2656–2668 (2013)

    Article  Google Scholar 

  3. Bellman, R.: Adaptive Control Processes: A Guided Tour. A Rand Corporation Research Study Series. Princeton University Press, Princeton (1961)

    Book  Google Scholar 

  4. Bhanu, B., Tan, X.: A triplet based approach for indexing of fingerprint database for identification. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 205–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45344-X_29

    Chapter  Google Scholar 

  5. Cao, K., Liu, E., Jain, A.K.: Segmentation and enhancement of latent fingerprints: a coarse to fine ridgestructure dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1847–1859 (2014)

    Article  Google Scholar 

  6. Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2128–2141 (2010)

    Article  Google Scholar 

  7. Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint indexing based on minutia cylinder-code. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1051–1057 (2011)

    Article  Google Scholar 

  8. Cappelli, R., Maio, D.: The state of the art in fingerprint classification. In: Ratha, N., Bolle, R. (eds.) Automatic Fingerprint Recognition Systems, pp. 183–205. Springer, New York (2004). https://doi.org/10.1007/0-387-21685-5_9

    Chapter  Google Scholar 

  9. Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recogn. Lett. 26(9), 1363–1376 (2005)

    Article  Google Scholar 

  10. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  11. Galar, M., et al.: A survey of fingerprint classification part i: taxonomies on feature extraction methods and learning models. Knowl.-Based Syst. 81, 76–97 (2015)

    Article  Google Scholar 

  12. Gil-Costa, V., Barrientos, R.J., Marin, M., Bonacic, C.: Scheduling metric-space queries processing on multi-core processors. In: 18th Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP 2010), pp. 187–194. IEEE Computer Society, Pisa (2010)

    Google Scholar 

  13. Gil-Costa, V., Marin, M.: Load balancing query processing in metric-space similarity search. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012), pp. 368–375. IEEE, Ottawa (2012)

    Google Scholar 

  14. Gutiérrez, P.D., Lastra, M., Herrera, F., Benítez, J.M.: A high performance fingerprint matching system for large databases based on GPU. IEEE Trans. Inf. Forensics Secur. 9(1), 62–71 (2014)

    Article  Google Scholar 

  15. Gutierrez, P.D., Lastra, M., Herrera, F., Benitez, J.M.: A high performance fingerprint matching system for large databases based on GPU. IEEE Trans. Inf. Forensics Secur. 9(1), 62–71 (2014)

    Article  Google Scholar 

  16. Hong, J.H., Min, J.K., Cho, U.K., Cho, S.B.: Fingerprint classification using one-vs-all support vector machines dynamically ordered with Naï ve Bayes classifiers. Pattern Recogn. 41(2), 662–671 (2008)

    Article  Google Scholar 

  17. Jain, A., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer, New York (2007). https://doi.org/10.1007/978-0-387-71041-9

    Book  Google Scholar 

  18. Jiang, R.M., Crookes, D.: FPGA-based minutia matching for biometric fingerprint image database retrieval. J. Real-Time Image Proc. 3(3), 177–182 (2008)

    Article  Google Scholar 

  19. Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Boston (1973)

    MATH  Google Scholar 

  20. Kumar, A., Kwong, C.: Towards contactless, low-cost and accurate 3D fingerprint identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3438–3443 (2013)

    Google Scholar 

  21. Le, H.H., Nguyen, N.H., Nguyen, T.T.: Exploiting GPU for large scale fingerprint identification. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9621, pp. 688–697. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49381-6_66

    Chapter  Google Scholar 

  22. Lindoso, A., Entrena, L., Izquierdo, J.: FPGA-based acceleration of fingerprint minutiae matching. In: 2007 3rd Southern Conference on Programmable Logic, pp. 81–86 (2007)

    Google Scholar 

  23. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009). https://doi.org/10.1007/978-1-84882-254-2

    Book  MATH  Google Scholar 

  24. Marin, M., Gil-Costa, V.: Approximate distributed metric-space search. In: ACM Workshop on Large-Scale and Distributed Information Retrieval (LSDS-IR 2011), Glasgow, UK (2011)

    Google Scholar 

  25. Marin, M., Gil-Costa, V., Bonacic, C., Baeza-Yates, R., Scherson, I.D.: Sync/async parallel search for the efficient design and construction of web search engines. Parallel Comput. 36(4), 153–168 (2010)

    Article  Google Scholar 

  26. Navarro, G., Uribe-Paredes, R.: Fully dynamic metric access methods based on hyperplane partitioning. Inf. Syst. 36(4), 734–747 (2011)

    Article  Google Scholar 

  27. Peralta, D., Triguero, I., Sanchez-Reillo, R., Herrera, F., Benítez, J.M.: Fast fingerprint identification for large databases. Pattern Recogn. 47(2), 588–602 (2014)

    Article  Google Scholar 

  28. Partnership for Advanced Computing in Europe (PRACE): Best Practice Guide - Intel Xeon Phi

    Google Scholar 

  29. Wang, E., et al.: High-Performance Computing on the Intel\({^{\textregistered }}\) Xeon Phi™. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06486-4

    Book  Google Scholar 

  30. Watson, C.I.: NIST Special Database 14. Fingerprint Database, US National Institute of Standards and Technology (1993)

    Google Scholar 

  31. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, New York (2006). https://doi.org/10.1007/0-387-29151-2

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This research was partially funded by Project CONICYT FONDEF/Cuarto Concurso IDeA en dos Etapas del Fondo de Fomento al Desarrollo Científico y Tecnológico, Programa IDeA, FONDEF/CONICYT 2017 ID17i10254. D. Peralta is a Postdoctoral Fellow of the Research Foundation of Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Barrientos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barrientos, R.J., Hernández-García, R., Ortega, K., Luque, E., Peralta, D. (2019). Heap-Based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms. In: Naiouf, M., Chichizola, F., Rucci, E. (eds) Cloud Computing and Big Data. JCC&BD 2019. Communications in Computer and Information Science, vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-030-27713-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27713-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27712-3

  • Online ISBN: 978-3-030-27713-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics