Advertisement

Heap-Based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms

  • Ricardo J. BarrientosEmail author
  • Ruber Hernández-García
  • Kevin Ortega
  • Emilio Luque
  • Daniel Peralta
Conference paper
  • 135 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1050)

Abstract

Nowadays, fingerprint is the most used biometric trait for individuals identification. In this area, the state-of-the-art algorithms are very accurate, but when the database contains millions of identities, an acceleration of the algorithm is required. From these algorithms, Minutia Cylinder-Code (MCC) stands out for its good results in terms of accuracy, however its efficiency in computational time is not high. In this work, we propose to use two different parallel platforms to accelerate fingerprint matching process by using MCC: (1) a multi-core server, and (2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary structure to process the global similarity of MCC. As heap-based algorithms are exhaustive (all the elements are accessed), we also explored the use an indexing algorithm to avoid comparing the query against all the fingerprints of the database. Experimental results show an improvement up to 97.15x of speed-up, which is competitive compared to other state-of-the-art algorithms in GPU and FPGA. To the best of our knowledge, this is the first work for fingerprint identification using a Xeon Phi coprocessor.

Keywords

Coprocessors Xeon Phi MCC Fingerprint 

Notes

Acknowledgement

This research was partially funded by Project CONICYT FONDEF/Cuarto Concurso IDeA en dos Etapas del Fondo de Fomento al Desarrollo Científico y Tecnológico, Programa IDeA, FONDEF/CONICYT 2017 ID17i10254. D. Peralta is a Postdoctoral Fellow of the Research Foundation of Flanders.

References

  1. 1.
    Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: kNN query processing in metric spaces using GPUs. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 380–392. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23400-2_35CrossRefGoogle Scholar
  2. 2.
    Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: Range query processing on single and multi GPU environments. Comput. Electr. Eng. 39(8), 2656–2668 (2013)CrossRefGoogle Scholar
  3. 3.
    Bellman, R.: Adaptive Control Processes: A Guided Tour. A Rand Corporation Research Study Series. Princeton University Press, Princeton (1961)CrossRefGoogle Scholar
  4. 4.
    Bhanu, B., Tan, X.: A triplet based approach for indexing of fingerprint database for identification. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 205–210. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45344-X_29CrossRefGoogle Scholar
  5. 5.
    Cao, K., Liu, E., Jain, A.K.: Segmentation and enhancement of latent fingerprints: a coarse to fine ridgestructure dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1847–1859 (2014)CrossRefGoogle Scholar
  6. 6.
    Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2128–2141 (2010)CrossRefGoogle Scholar
  7. 7.
    Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint indexing based on minutia cylinder-code. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1051–1057 (2011)CrossRefGoogle Scholar
  8. 8.
    Cappelli, R., Maio, D.: The state of the art in fingerprint classification. In: Ratha, N., Bolle, R. (eds.) Automatic Fingerprint Recognition Systems, pp. 183–205. Springer, New York (2004).  https://doi.org/10.1007/0-387-21685-5_9CrossRefGoogle Scholar
  9. 9.
    Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recogn. Lett. 26(9), 1363–1376 (2005)CrossRefGoogle Scholar
  10. 10.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)CrossRefGoogle Scholar
  11. 11.
    Galar, M., et al.: A survey of fingerprint classification part i: taxonomies on feature extraction methods and learning models. Knowl.-Based Syst. 81, 76–97 (2015)CrossRefGoogle Scholar
  12. 12.
    Gil-Costa, V., Barrientos, R.J., Marin, M., Bonacic, C.: Scheduling metric-space queries processing on multi-core processors. In: 18th Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP 2010), pp. 187–194. IEEE Computer Society, Pisa (2010)Google Scholar
  13. 13.
    Gil-Costa, V., Marin, M.: Load balancing query processing in metric-space similarity search. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012), pp. 368–375. IEEE, Ottawa (2012)Google Scholar
  14. 14.
    Gutiérrez, P.D., Lastra, M., Herrera, F., Benítez, J.M.: A high performance fingerprint matching system for large databases based on GPU. IEEE Trans. Inf. Forensics Secur. 9(1), 62–71 (2014)CrossRefGoogle Scholar
  15. 15.
    Gutierrez, P.D., Lastra, M., Herrera, F., Benitez, J.M.: A high performance fingerprint matching system for large databases based on GPU. IEEE Trans. Inf. Forensics Secur. 9(1), 62–71 (2014)CrossRefGoogle Scholar
  16. 16.
    Hong, J.H., Min, J.K., Cho, U.K., Cho, S.B.: Fingerprint classification using one-vs-all support vector machines dynamically ordered with Naï ve Bayes classifiers. Pattern Recogn. 41(2), 662–671 (2008)CrossRefGoogle Scholar
  17. 17.
    Jain, A., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-71041-9CrossRefGoogle Scholar
  18. 18.
    Jiang, R.M., Crookes, D.: FPGA-based minutia matching for biometric fingerprint image database retrieval. J. Real-Time Image Proc. 3(3), 177–182 (2008)CrossRefGoogle Scholar
  19. 19.
    Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Boston (1973)zbMATHGoogle Scholar
  20. 20.
    Kumar, A., Kwong, C.: Towards contactless, low-cost and accurate 3D fingerprint identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3438–3443 (2013)Google Scholar
  21. 21.
    Le, H.H., Nguyen, N.H., Nguyen, T.T.: Exploiting GPU for large scale fingerprint identification. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9621, pp. 688–697. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49381-6_66CrossRefGoogle Scholar
  22. 22.
    Lindoso, A., Entrena, L., Izquierdo, J.: FPGA-based acceleration of fingerprint minutiae matching. In: 2007 3rd Southern Conference on Programmable Logic, pp. 81–86 (2007)Google Scholar
  23. 23.
    Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009).  https://doi.org/10.1007/978-1-84882-254-2CrossRefzbMATHGoogle Scholar
  24. 24.
    Marin, M., Gil-Costa, V.: Approximate distributed metric-space search. In: ACM Workshop on Large-Scale and Distributed Information Retrieval (LSDS-IR 2011), Glasgow, UK (2011)Google Scholar
  25. 25.
    Marin, M., Gil-Costa, V., Bonacic, C., Baeza-Yates, R., Scherson, I.D.: Sync/async parallel search for the efficient design and construction of web search engines. Parallel Comput. 36(4), 153–168 (2010)CrossRefGoogle Scholar
  26. 26.
    Navarro, G., Uribe-Paredes, R.: Fully dynamic metric access methods based on hyperplane partitioning. Inf. Syst. 36(4), 734–747 (2011)CrossRefGoogle Scholar
  27. 27.
    Peralta, D., Triguero, I., Sanchez-Reillo, R., Herrera, F., Benítez, J.M.: Fast fingerprint identification for large databases. Pattern Recogn. 47(2), 588–602 (2014)CrossRefGoogle Scholar
  28. 28.
    Partnership for Advanced Computing in Europe (PRACE): Best Practice Guide - Intel Xeon PhiGoogle Scholar
  29. 29.
    Wang, E., et al.: High-Performance Computing on the Intel\({^{\textregistered }}\) Xeon Phi™. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06486-4CrossRefGoogle Scholar
  30. 30.
    Watson, C.I.: NIST Special Database 14. Fingerprint Database, US National Institute of Standards and Technology (1993)Google Scholar
  31. 31.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, New York (2006).  https://doi.org/10.1007/0-387-29151-2CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Technological Research in Pattern Recognition (LITRP), Department of Computer Science and Industries, Faculty of Engineering ScienceUniversidad Católica del MauleTalcaChile
  2. 2.Kunert Business Software GmbH (KBS-Leipzig)LeipzigGermany
  3. 3.Universitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Data Mining and Modelling for Biomedicine GroupVIB Center for Inflammation ResearchGhentBelgium
  5. 5.Department of Applied Mathematics, Computer Science and StatisticsGhent UniversityGhentBelgium

Personalised recommendations