Skip to main content

Brief Introduction to Sheaf Theory

  • Chapter
  • First Online:
Intersection Homology & Perverse Sheaves

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 281))

  • 3260 Accesses

Abstract

In this chapter, we introduce the prerequisites needed later on (in Chapter 6) for the sheaf-theoretic description of intersection homology groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A functor \(F:{\mathcal A} \to {\mathcal B}\) of abelian categories is left exact if a short exact sequence 0 → A′→ A → A″ → 0 in \({\mathcal A}\) is sent by F to an exact sequence 0 → F(A′) → F(A) → F(A″). F is right exact if F(A′) → F(A) → F(A″) → 0 is exact. F is exact if F preserves exact sequences, i.e., 0 → F(A′) → F(A) → F(A″) → 0 is exact.

  2. 2.

    A Stein manifold is a complex manifold X so that every coherent \({\mathcal O}_X\)-sheaf \({\mathcal F}\) is acyclic. (Recall that \({\mathcal F}\) is coherent if it has locally a finite presentation \({\mathcal O}_X^n \to {\mathcal O}_X^m \to {\mathcal F} \to 0\), e.g., \({\mathcal F}\) is the locally free sheaf of sections of a holomorphic vector bundle.) For example, a closed complex submanifold of some \({\mathbb C}^N\) (e.g., a nonsingular affine complex variety) is a Stein manifold.

References

  1. Banagl, M.: Topological Invariants of Stratified Spaces. Springer Monographs in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  2. Borel, A.: Intersection cohomology. Modern BirkhÀuser Classics. BirkhÀuser Boston, Inc., Boston, MA (2008)

    MATH  Google Scholar 

  3. Bredon, G.E.: Sheaf Theory. Graduate Texts in Mathematics, vol. 170, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  4. de Cataldo, M.A.A., Migliorini, L.: The hard lefschetz theorem and the topology of semismall maps. Ann. Sci. École Norm. Sup. (4) 35(5), 759–772 (2002)

    Google Scholar 

  5. Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004)

    Book  Google Scholar 

  6. Friedman, G.: Singular Intersection Homology. http://faculty.tcu.edu/gfriedman/IHbook.pdf

  7. Iversen, B.: Cohomology of sheaves. Universitext. Springer, Berlin (1986)

    Book  Google Scholar 

  8. Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292. Springer, Berlin (1994)

    Google Scholar 

  9. Kaup, L., Kaup, B.: Holomorphic Functions of Several Variables. De Gruyter Studies in Mathematics, vol. 3. Walter de Gruyter & Co., Berlin (1983) An introduction to the fundamental theory, With the assistance of Gottfried Barthel, Translated from the German by Michael Bridgland

    Google Scholar 

  10. Spanier, E.H.: Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London (1966)

    MATH  Google Scholar 

  11. Verdier, J.-L.: Catégories dérivées: quelques résultats (état 0). In: Cohomologie étale. Lecture Notes in Mathematics, vol. 569, pp. 262–311. Springer, Berlin (1977)

    Chapter  Google Scholar 

  12. Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque, vol. 239, 1996. With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maxim, L.G. (2019). Brief Introduction to Sheaf Theory. In: Intersection Homology & Perverse Sheaves. Graduate Texts in Mathematics, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-030-27644-7_4

Download citation

Publish with us

Policies and ethics