Abstract
Association rules have been widely applied in a variety of fields over the last few years, given their potential for descriptive problems. One of the areas where the association rules have been most prominent in recent years is social media mining. In this paper, we propose the use of association rules and a novel generalization of these based on emotions to analyze data from the social network Twitter. With this, it is possible to summarize a great set of tweets in rules based on 8 basic emotions. These rules can be used to categorize the feelings of the social network according to, for example, a specific character.
Keywords
- Association rules
- Sentiment analysis
- Social media mining
- Generalized association rules
This is a preview of subscription content, access via your institution.
Buying options



References
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM sigmod record, vol. 22, pp. 207–216. ACM (1993)
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Databases, VLDB, vol. 1215, pp. 487–499 (1994)
Boztuğ, Y., Reutterer, T.: A combined approach for segment-specific market basket analysis. Eur. J. Oper. Res. 187(1), 294–312 (2008)
Cagliero, L., Fiori, A.: Analyzing twitter user behaviors and topic trends by exploiting dynamic rules. In: Cao, L., Yu, P. (eds.) Behavior Computing. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2969-1_17
Cagliero, L., Fiori, A.: Discovering generalized association rules from Twitter. Intell. Data Anal. 17(4), 627–648 (2013)
Delgado, M., Ruiz, M.D., Sanchez, D., Serrano, J.M.: A fuzzy rule mining approach involving absent items. In: Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology, pp. 275–282. Atlantis Press (2011)
Erlandsson, F., Bródka, P., Borg, A., Johnson, H.: Finding influential users in social media using association rule learning. Entropy 18(5), 164 (2016)
Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87(3), 317–335 (2017)
Hai, Z., Chang, K., Kim, J.: Implicit feature identification via co-occurrence association rule mining. In: Gelbukh, A.F. (ed.) CICLing 2011. LNCS, vol. 6608, pp. 393–404. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19400-9_31
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM sigmod record, vol. 29, pp. 1–12. ACM (2000)
Kwon, K., Jeon, Y., Cho, C., Seo, J., Chung, I.J., Park, H.: Sentiment trend analysis in social web environments. In: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 261–268. IEEE (2017)
Michail, A.: Data mining library reuse patterns using generalized association rules. In: Proceedings of the 22nd International Conference on Software Engineering, pp. 167–176. ACM (2000)
Plutchik, R.: The nature of emotions: human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001)
Ruiz, M.D., Gómez-Romero, J., Molina-Solana, M., Campaña, J.R., Martín-Bautista, M.J.: Meta-association rules for mining interesting associations in multiple datasets. Appl. Soft Comput. 49, 212–223 (2016)
Salas-Zárate, M.P., Medina-Moreira, J., Lagos-Ortiz, K., Luna-Aveiga, H., Rodriguez-Garcia, M.A., Valencia-García, R.: Sentiment analysis on tweets about diabetes: an aspect-level approach. Computational and mathematical methods in medicine 2017 (2017)
Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Min. Knowl. Disc. 4(2–3), 163–192 (2000)
Srikant, R., Agrawal, R.: Mining generalized association rules. Future Gener. Comput. Syst. 13(2–3), 161–180 (1997)
Yuan, X., Buckles, B.P., Yuan, Z., Zhang, J.: Mining negative association rules. In: Proceedings of Seventh International Symposium on Computers and Communications, ISCC 2002, pp. 623–628. IEEE (2002)
Acknowledgment
This research paper is part of the COPKIT project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 786687.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Diaz-Garcia, J.A., Ruiz, M.D., Martin-Bautista, M.J. (2019). Generalized Association Rules for Sentiment Analysis in Twitter. In: Cuzzocrea, A., Greco, S., Larsen, H., Saccà, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2019. Lecture Notes in Computer Science(), vol 11529. Springer, Cham. https://doi.org/10.1007/978-3-030-27629-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-27629-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27628-7
Online ISBN: 978-3-030-27629-4
eBook Packages: Computer ScienceComputer Science (R0)