Skip to main content

An Efficient Greedy Algorithm for Sequence Recommendation

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11706)

Abstract

Recommending a sequence of items that maximizes some objective function arises in many real-world applications. In this paper, we consider a utility function over sequences of items where sequential dependencies between items are modeled using a directed graph. We propose EdGe, an efficient greedy algorithm for this problem and we demonstrate its effectiveness on both synthetic and real datasets. We show that EdGe achieves comparable recommendation precision to the state-of-the-art related work OMEGA, and in considerably less time. This work opens several new directions that we discuss at the end of the paper.

Keywords

  • Sequence recommendation
  • Submodular maximization
  • Algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-27615-7_24
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-27615-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. 1.

    http://grouplens.org/datasets/movielens/1m/.

References

  1. Amer-Yahia, S., Bonchi, F., Castillo, C., Feuerstein, E., Mendez-Diaz, I., Zabala, P.: Composite retrieval of diverse and complementary bundles. IEEE Trans. Knowl. Data Eng. 26(11), 2662–2675 (2014)

    CrossRef  Google Scholar 

  2. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

    CrossRef  MathSciNet  Google Scholar 

  3. Hariri, N., Mobasher, B., Burke, R.: Context-aware music recommendation based on latent topic sequential patterns. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys 2012, pp. 131–138. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2365952.2365979, https://doi.org/10.1145/2365952.2365979

  4. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 8, 30–37 (2009)

    CrossRef  Google Scholar 

  5. Krause, A., Golovin, D.: Submodular Function Maximization, pp. 71–104. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781139177801.004

    CrossRef  Google Scholar 

  6. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    CrossRef  MathSciNet  Google Scholar 

  7. Parameswaran, A., Venetis, P., Garcia-Molina, H.: Recommendation systems with complex constraints: a course recommendation perspective. ACM Trans. Inf. Syst. (TOIS) 29(4), 20 (2011)

    CrossRef  Google Scholar 

  8. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10

    CrossRef  Google Scholar 

  9. Pei, J., et al.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

    CrossRef  Google Scholar 

  10. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 811–820. ACM (2010)

    Google Scholar 

  11. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_1

    CrossRef  MATH  Google Scholar 

  12. Roy, S.B., Das, G., Amer-Yahia, S., Yu, C.: Interactive itinerary planning. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 15–26. IEEE (2011)

    Google Scholar 

  13. Afoudi, Y., Lazaar, M., Al Achhab, M.: Collaborative filtering recommender system. In: Ezziyyani, M. (ed.) AI2SD 2018. AISC, vol. 915, pp. 332–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11928-7_30

    CrossRef  Google Scholar 

  14. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014140

    CrossRef  Google Scholar 

  15. Tschiatschek, S., Singla, A., Krause, A.: Selecting sequences of items via submodular maximization. In: AAAI, pp. 2667–2673 (2017)

    Google Scholar 

  16. Wörndl, W., Hefele, A., Herzog, D.: Recommending a sequence of interesting places for tourist trips. Inf. Technol. Tour. 17(1), 31–54 (2017)

    CrossRef  Google Scholar 

  17. Xie, M., Lakshmanan, L.V., Wood, P.T.: Breaking out of the box of recommendations: from items to packages. In: Proceedings of the Fourth ACM Conference on Recommender Systems., pp. 151–158. ACM (2010)

    Google Scholar 

  18. Xu, J., Xing, T., Van Der Schaar, M.: Personalized course sequence recommendations. IEEE Trans. Signal Process. 64(20), 5340–5352 (2016)

    CrossRef  MathSciNet  Google Scholar 

  19. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 129–142 (2015)

    CrossRef  Google Scholar 

  20. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next basket recommendation. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 729–732. ACM (2016)

    Google Scholar 

  21. Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1–2), 31–60 (2001)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idir Benouaret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Benouaret, I., Amer-Yahia, S., Roy, S.B. (2019). An Efficient Greedy Algorithm for Sequence Recommendation. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11706. Springer, Cham. https://doi.org/10.1007/978-3-030-27615-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27615-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27614-0

  • Online ISBN: 978-3-030-27615-7

  • eBook Packages: Computer ScienceComputer Science (R0)