Abstract
Recommending a sequence of items that maximizes some objective function arises in many real-world applications. In this paper, we consider a utility function over sequences of items where sequential dependencies between items are modeled using a directed graph. We propose EdGe, an efficient greedy algorithm for this problem and we demonstrate its effectiveness on both synthetic and real datasets. We show that EdGe achieves comparable recommendation precision to the state-of-the-art related work OMEGA, and in considerably less time. This work opens several new directions that we discuss at the end of the paper.
Keywords
- Sequence recommendation
- Submodular maximization
- Algorithms
This is a preview of subscription content, access via your institution.
Buying options








References
Amer-Yahia, S., Bonchi, F., Castillo, C., Feuerstein, E., Mendez-Diaz, I., Zabala, P.: Composite retrieval of diverse and complementary bundles. IEEE Trans. Knowl. Data Eng. 26(11), 2662–2675 (2014)
Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)
Hariri, N., Mobasher, B., Burke, R.: Context-aware music recommendation based on latent topic sequential patterns. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys 2012, pp. 131–138. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2365952.2365979, https://doi.org/10.1145/2365952.2365979
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 8, 30–37 (2009)
Krause, A., Golovin, D.: Submodular Function Maximization, pp. 71–104. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781139177801.004
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)
Parameswaran, A., Venetis, P., Garcia-Molina, H.: Recommendation systems with complex constraints: a course recommendation perspective. ACM Trans. Inf. Syst. (TOIS) 29(4), 20 (2011)
Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10
Pei, J., et al.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)
Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 811–820. ACM (2010)
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_1
Roy, S.B., Das, G., Amer-Yahia, S., Yu, C.: Interactive itinerary planning. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 15–26. IEEE (2011)
Afoudi, Y., Lazaar, M., Al Achhab, M.: Collaborative filtering recommender system. In: Ezziyyani, M. (ed.) AI2SD 2018. AISC, vol. 915, pp. 332–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11928-7_30
Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014140
Tschiatschek, S., Singla, A., Krause, A.: Selecting sequences of items via submodular maximization. In: AAAI, pp. 2667–2673 (2017)
Wörndl, W., Hefele, A., Herzog, D.: Recommending a sequence of interesting places for tourist trips. Inf. Technol. Tour. 17(1), 31–54 (2017)
Xie, M., Lakshmanan, L.V., Wood, P.T.: Breaking out of the box of recommendations: from items to packages. In: Proceedings of the Fourth ACM Conference on Recommender Systems., pp. 151–158. ACM (2010)
Xu, J., Xing, T., Van Der Schaar, M.: Personalized course sequence recommendations. IEEE Trans. Signal Process. 64(20), 5340–5352 (2016)
Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 129–142 (2015)
Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next basket recommendation. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 729–732. ACM (2016)
Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1–2), 31–60 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Benouaret, I., Amer-Yahia, S., Roy, S.B. (2019). An Efficient Greedy Algorithm for Sequence Recommendation. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11706. Springer, Cham. https://doi.org/10.1007/978-3-030-27615-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-27615-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27614-0
Online ISBN: 978-3-030-27615-7
eBook Packages: Computer ScienceComputer Science (R0)