Skip to main content

Discrete Variable (DV) QKD

  • Chapter
  • First Online:
Physical-Layer Security and Quantum Key Distribution

Abstract

This chapter is devoted to the discrete variable (DV) QKD protocols and represents the continuation of Chap. 6. The chapter starts with the description of BB84 and decoy-state-based protocols, and evaluation of their secrecy fraction performance in terms of achievable distance. The next topic is related to the security of DV-QKD protocols when the resources are finite. We introduce the concept of composable ε-security and describe how it can be evaluated for both collective and coherent attacks. We also discuss how the concept of correctness and secrecy can be combined to come up with tight security bounds. After that, we evaluate the BB84 and decoy-state protocols for finite-key assumption over atmospheric turbulence effects. We also describe how to deal with time-varying free-space optical channel conditions. The focus is then moved to high-dimensional (HD) QKD protocols, starting with the description of mutually unbiased bases (MUBs) selection, followed by the introduction of the generalized Bell states . We then describe how to evaluate the security of HD QKD protocols for finite resources . We describe various HD QKD protocols, including time-phase encoding, time-energy encoding, OAM-based HD QKD, fiber Bragg grating (FBGs)-based HD QKD, and waveguide Bragg gratings (WBGs)-based HD QKD protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennet CH, Brassard G (1984) Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems, and signal processing, Bangalore, India, pp 175–179

    Google Scholar 

  2. Bennett CH (1992) Quantum cryptography: uncertainty in the service of privacy. Science 257:752–753

    Article  ADS  Google Scholar 

  3. Neilsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge: Cambridge University Press

    Google Scholar 

  4. Van Assche G (2006) Quantum cryptography and secrete-key distillation. Cambridge University Press, Cambridge-New York

    Book  MATH  Google Scholar 

  5. Djordjevic IB (2012) Quantum information processing and quantum error correction: an engineering approach. Elsevier/Academic Press, Amsterdam-Boston

    Google Scholar 

  6. Bennett CH (1992) Quantum cryptography using any two nonorthogonal states. Phys Rev Lett 68(21):3121–3124

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Devetak I, Winter A (2005) Distillation of secret key and entanglement from quantum states. Proc R Soc Lond Ser A 461(2053):207–235

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M (2009) The security of practical quantum key distribution. Rev Mod Phys 81:1301

    Article  ADS  Google Scholar 

  9. Holevo AS (1973) Bounds for the quantity of information transmitted by a quantum communication channel. Probl Inf Trans 9(3):177–183

    Google Scholar 

  10. Lo H-K, Ma X, Chen K (2005) Decoy state quantum key distribution. Phys Rev Lett 94:230504

    Article  ADS  Google Scholar 

  11. Hwang W-Y (2003) Quantum key distribution with high loss: toward global secure communication. Phys Rev Lett 91:057901

    Article  ADS  Google Scholar 

  12. Ma X, Fung C-HF, Dupuis F, Chen K, Tamaki K, Lo H-K (2006) Decoy-state quantum key distribution with two-way classical postprocessing. Phys Rev A 74:032330

    Article  ADS  Google Scholar 

  13. Zhao Y, Qi B, Ma X, Lo H-K, Qian L (2006) Experimental quantum key distribution with decoy states. Phys Rev Lett 96:070502

    Article  ADS  Google Scholar 

  14. Rosenberg D, Harrington JW, Rice PR, Hiskett PA, Peterson CG, Hughes RJ, Lita AE, Nam SW, Nordholt JE (2007) Long-distance decoy-state quantum key distribution in optical fiber. Phys Rev Lett 98(1):010503

    Article  ADS  Google Scholar 

  15. Yuan ZL, Sharpe AW, Shields AJ (2007) Unconditionally secure one-way quantum key distribution using decoy pulses. Appl Phys Lett 90:011118

    Article  ADS  Google Scholar 

  16. Hasegawa J, Hayashi M, Hiroshima T, Tanaka A, Tomita A (2007) Experimental decoy state quantum key distribution with unconditional security incorporating finite statistics. arXiv:0705.3081

  17. Tsurumaru T, Soujaeff A, Takeuchi S (2008) Exact minimum and maximum of yield with a finite number of decoy light intensities. Phys Rev A 77:022319

    Article  ADS  MATH  Google Scholar 

  18. Hayashi M (2007) General theory for decoy-state quantum key distribution with an arbitrary number of intensities. New J Phys 9:284

    Article  Google Scholar 

  19. Zhao Y, Qi B, Ma X, Lo H, Qian L (2006) Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber. In: Proceedings of the 2006 IEEE international symposium on information theory, Seattle, WA, pp 2094–2098

    Google Scholar 

  20. Wang X-B (2013) Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys Rev A 87(1):012320

    Article  ADS  Google Scholar 

  21. Sun X, Djordjevic IB, Neifeld MA (2016) Secret key rates and optimization of BB84 and decoy state protocols over time-varying free-space optical channels. IEEE Photon J 8(3):7904713

    Google Scholar 

  22. Ma X (2008) Quantum cryptography: from theory to practice. PhD dissertation, University of Toronto

    Google Scholar 

  23. Fung C-HF, Tamaki K, Lo H-K (2006) Performance of two quantum-key-distribution protocols. Phys Rev A 73:012337

    Article  ADS  Google Scholar 

  24. Gobby C, Yuan ZL, Shields AJ (2004) Quantum key distribution over 122 km of standard telecom fiber. Appl Phys Lett 84:3762

    Article  ADS  Google Scholar 

  25. Ben-Or M, Horodecki M, Leung DW, Mayers D, Oppenheim J (2005) The universal composable security of quantum key distribution. In: Theory of cryptography: second theory of cryptography conference, TCC 2005. Lecture notes in computer science, vol 3378. Springer, Berlin, pp 386–406

    Chapter  MATH  Google Scholar 

  26. König R, Renner R, Bariska A, Maurer U (2007) Small accessible quantum information does not imply security. Phys Rev Lett 98:140502

    Article  ADS  Google Scholar 

  27. Renner R, König R (2005) universally composable privacy amplification against quantum adversaries. In: Theory of cryptography: second theory of cryptography conference, TCC 2005. Lecture notes in computer science, vol 3378. Springer, Berlin, pp 407–425

    Chapter  Google Scholar 

  28. Renner R (2005) Security of quantum key distribution. PhD dissertation, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  29. Scarani V, Renner R (2008) Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys Rev Lett 100(20):200501

    Article  ADS  Google Scholar 

  30. Sheridan L, Le TP, Scarani V (2010) Finite-key security against coherent attacks in quantum key distribution. New J Phys 12:123019

    Article  Google Scholar 

  31. Djordjevic IB (2018) FBG-based weak coherent state and entanglement assisted multidimensional QKD. IEEE Photon J 10(4):7600512

    Article  MathSciNet  Google Scholar 

  32. Djordjevic IB (2013) Multidimensional QKD based on combined orbital and spin angular momenta of photon. IEEE Photon J 5(6):7600112

    Article  ADS  Google Scholar 

  33. Djordjevic IB (2016) Integrated optics modules based proposal for quantum information processing, teleportation, QKD, and quantum error correction employing photon angular momentum. IEEE Photon J 8(1):6600212

    Article  Google Scholar 

  34. Ilic I, Djordjevic IB, Stankovic M (2017) On a general definition of conditional Rényi entropies. In: Proceedings of the 4th international electronic conference on entropy and its applications, 21 November–1 December 2017. Sciforum electronic conference series, vol 4. https://doi.org/10.3390/ecea-4-05030

    Article  Google Scholar 

  35. Impagliazzo R, Levin LA, Luby M (1989) Pseudo-random generation from one-way functions. In: Proceedings of the 21st annual ACM symposium on theory of computing, Johnson DS (ed.), pp. 12–24, May 14–17, 1989, Seattle, Washington, USA

    Google Scholar 

  36. Håstad J, Impagliazzo R, Levin LA, Luby M (1999) A pseudorandom generator from any one-way function. SIAM J Comput 28(4):1364–1396

    Article  MathSciNet  MATH  Google Scholar 

  37. Tomamichel M, Schaffner C, Smith A, Renner R (2011) Leftover hashing against quantum side information. IEEE Trans Inf Theory 57(8):5524–5535

    Article  MathSciNet  MATH  Google Scholar 

  38. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  39. Renner R (2007) Symmetry of large physical systems implies independence of subsystems. Nat Phys 3:645–649

    Article  Google Scholar 

  40. Christandl M, König R, Renner R (2009) Postselection technique for quantum channels with applications to quantum cryptography. Phys Rev Lett 102:020504

    Article  ADS  Google Scholar 

  41. Tomamichel M, Lim CCW, Gisin N, Renner R (2012) Tight finite-key analysis for quantum cryptography. Nat Commun 3:634

    Article  ADS  Google Scholar 

  42. Huttner B, Imoto N, Gisin N, Mor T (1995) Quantum cryptography with coherent states. Phys Rev A 51(3):1863

    Article  ADS  Google Scholar 

  43. Djordjevic IB (2017) Advanced optical and wireless communications systems. Springer International Publishing, Switzerland

    Google Scholar 

  44. Al-Habash MA, Andrews LC, Phillips RL (2001) Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt Eng 40(8):1554–1562

    Article  ADS  Google Scholar 

  45. Andrews LC, Phillips LC (2005) Laser beam propagation through random media, 2nd edn. SPIE Press, Bellingham, Washington, USA

    Book  Google Scholar 

  46. Toyoshima M, Sasaki T, Takenaka H, Takayama Y (2012) Scintillation model of laser beam propagation in satellite-to-ground bidirectional atmospheric channels. Acta Astronaut 80:58–64

    Article  ADS  Google Scholar 

  47. Kim K-H, Higashino T, Tsukamoto K, Komaki S (2011) Optical fading analysis considering spectrum of optical scintillation in terrestrial free-space optical channel. In: Proceedings of IEEE conference on space optical systems and applications (ICSOS) (IEEE, 2011), pp. 58–66, 11-13 May 2011, Santa Monica, CA, USA

    Google Scholar 

  48. Weinberg GV, Gunn L (2011) Simulation of statistical distributions using the memoryless nonlinear transform. DSTO Technical Report DSTO TR-2517 2011. https://apps.dtic.mil/dtic/tr/fulltext/u2/a541304.pdf

  49. Lucamarini M, Dynes JF, Fröhlich B, Yuan ZL, Shields AJ (2015) Security bounds for efficient decoy-state quantum key distribution. IEEE J Sel Top Quantum Electron 21(2):197–204

    Article  ADS  Google Scholar 

  50. Rice P, Harrington J (2009) Numerical analysis of decoy state quantum key distribution protocols. http://www.arxiv.org/abs/quant-ph/0901.0013

  51. Tomamichel M, Renner R (2011) Uncertainty relation for smooth entropies. Phys Rev Lett 106(11):110506

    Article  ADS  Google Scholar 

  52. Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Statist Assoc 58(301):13–30

    Article  MathSciNet  MATH  Google Scholar 

  53. Lucamarini M, Dynes JF, Yuan ZL, Shields AJ (2012) Practical treatment of quantum bugs. In: Proceedings of the SPIE 8542, electro-optical remote sensing, photonic technologies, and applications VI, 85421K (19 November 2012). https://doi.org/10.1117/12.977870

  54. Ma X, Qi B, Zhao Y, Lo H-K (2005) Practical decoy state for quantum key distribution. Phys Rev A 72(1):012326

    Article  ADS  Google Scholar 

  55. Gottesman D, Lo H-K, Lütkenhaus N, Preskill J (2004) Security of quantum key distribution with imperfect devices. In: Proceedings of international symposium on information theory (ISIT 2004), pp 325–360, 27 June–2 July 2004, Chicago, IL, USA

    Google Scholar 

  56. Takeoka M, Guha S, Wilde MM (2014) Fundamental rate-loss tradeoff for optical quantum key distribution. Nat Commun 5:5235

    Google Scholar 

  57. Pirandola S, Laurenza R, Ottaviani C, Banchi L (2017) Fundamental limits of repeaterless quantum communications Nat Commun 8:15043

    Google Scholar 

  58. Djordjevic IB (2019) Hybrid DV-CV QKD outperforming existing QKD protocols in terms of secret-key rate and achievable distance. In: Proceedings of the 21st international conference on transparent optical networks (ICTON 2019), Angers, France, 9–13 July 2019

    Google Scholar 

  59. Jiang L, Taylor JM, Nemoto K, Munro WJ, van Meter R, Lukin MD (2009) Quantum repeater with encoding. Phys Rev A 79:032325

    Google Scholar 

  60. de Riedmatten H, Marcikic I, Scarani V, Tittel W, Zbinden H, Gisin N (2004) Tailoring photonic entanglement in high-dimensional Hilbert spaces. Phys Rev A 69:050304

    Article  MATH  Google Scholar 

  61. Thew RT, Acín A, Zbinden H, Gisin N (2004) Bell-type test of energy-time entangled qutrits. Phys Rev Lett 93:010503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. O’Sullivan-Hale MN, Khan IA, Boyd RW, Howell JC (2005) Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits. Phys Rev Lett 94:220501

    Article  ADS  Google Scholar 

  63. Neves L, Lima G, Gómez JGA, Monken CH, Saavedra C, Pádua S (2005) Generation of entangled states of qudits using twin photons. Phys Rev Lett 94:100501

    Article  ADS  Google Scholar 

  64. Walborn SP, Lemelle DS, Almeida MP, Ribeiro PHS (2006) Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys Rev Lett 96:090501

    Article  ADS  Google Scholar 

  65. Vaziri A, Weihs G, Zeilinger A (2002) Experimental two-photon, three-dimensional entanglement for QuCom. Phys Rev Lett 89:240401

    Article  ADS  Google Scholar 

  66. Langford NK, Dalton RB, Harvey MD, O’Brien JL, Pryde GJ, Gilchrist A, Bartlett SD, White AG (2004) Measuring entangled Qutrits and their use for quantum bit commitment. Phys Rev Lett 93:053601

    Article  ADS  Google Scholar 

  67. Molina-Terriza G, Vaziri A, Reháček J, Hradil Z, Zeilinger A (2004) Triggered Qutrits for QuCom protocols. Phys Rev Lett 92:167903

    Article  ADS  Google Scholar 

  68. Groblacher S, Jennewein T, Vaziri A, Weihs G, Zeilinger A (2006) Experimental quantum cryptography with qutrits. New J Phys 8:75

    Article  Google Scholar 

  69. Bozinovic N et al (2013) Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140):1545–1548

    Article  ADS  Google Scholar 

  70. Zhao Z-M et al (2013) A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement. Chin Phys Lett 30(6):060305

    Article  ADS  Google Scholar 

  71. Leach J, Courtial J, Skeldon K, Barnett SM, Franke-Arnold S, Padgett MJ (2004) Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys Rev Lett 92(1):013601

    Article  ADS  Google Scholar 

  72. Li H, Phillips D, Wang X, Ho D, Chen L, Zhou X-Q, Zhu J, Yu S, Cai X (2015) Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2:547–552

    Article  Google Scholar 

  73. Barreiro JT, Langford NK, Peters NA, Kwiat PG (2005) Generation of hyperentangled photon pairs. Phys Rev Lett 95:260501

    Article  ADS  Google Scholar 

  74. Barreiro JT, Wei T-C, Kwiat PG (2008) Beating the channel capacity limit for linear photonic superdense coding. Nat Phys 4:282

    Article  Google Scholar 

  75. Djordjevic IB (2019) Slepian-states-based DV- and CV-QKD schemes suitable for implementation in integrated optics. In: Proceedings of the 21st European conference on integrated optics (ECIO 2019), 24–26 April, 2019, Ghent, Belgium

    Google Scholar 

  76. Ivanovic ID (1981) Geometrical description of quantal state determination. J Phys A 14:3241

    Article  ADS  MathSciNet  Google Scholar 

  77. Wootters WK, Fields BD (1989) Optimal state-determination by mutually unbiased measurements. Ann Phys 191(2):363–381

    Article  ADS  MathSciNet  Google Scholar 

  78. Durt D, Englert B-G, Bengtsson I, Zyczkowski K (2010) On mutually unbiased bases. Int J Quantum Inf 8(4):535–640

    Article  MATH  Google Scholar 

  79. Aguilar EA, Borka JJ, Mironowicz P, Pawlowski M (2018) Connections between mutually unbiased bases and quantum random access codes. Phys Rev Lett 121:050501

    Article  ADS  Google Scholar 

  80. Islam NT, Lim CCW, Cahall C, Kim J, Gauthier DJ (2017) Provably secure and high-rate quantum key distribution with time-bin qudits. Sci Adv 3(11):e1701491

    Article  ADS  Google Scholar 

  81. Fivel DI (1995) Remarkable phase oscillations appearing in the lattice dynamics of Einstein-Podolsky-Rosen states. Phys Rev Lett 74:835

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Gottesman D (1998) Theory of fault-tolerant quantum computation. Phys Rev A 57:127

    Article  ADS  Google Scholar 

  83. Bandyopadhyay S, Boykin PO, Roychowdhury V, Vatan F (2002) A new proof for the existence of mutually unbiased bases. Algorithmica 34(4):512–528

    Article  MathSciNet  MATH  Google Scholar 

  84. Nagler B, Durt T (2003) Covariant cloning machines for four-level systems. Phys Rev A 68:042323

    Article  ADS  Google Scholar 

  85. Tadej W, Zyczkowski K (2006) A concise guide to complex Hadamard matrices. Open Syst Inf Dyn 13:133–177

    Article  MathSciNet  MATH  Google Scholar 

  86. Durt T, Kaszlikowski D, Chen J-L, Kwek LC (2004) Security of quantum key distributions with entangled qudits. Phys Rev A 69:032313

    Article  ADS  Google Scholar 

  87. Qu Z, Djordjevic IB (2016) 500 Gb/s free-space optical transmission over strong atmospheric turbulence channels. Opt Lett 41(14):3285–3288

    Article  ADS  Google Scholar 

  88. Djordjevic IB, Qu Z (2016) Coded orbital-angular-momentum-based free-space optical transmission. In: Wiley encyclopedia of electrical and electronics engineering. http://onlinelibrary.wiley.com/doi/10.1002/047134608X.W8291/abstract

  89. Qu Z, Djordjevic IB (2018) Orbital angular momentum multiplexed free-space optical communication systems based on coded modulation, in Novel insights into orbital angular momentum beams: from fundamentals, devices to applications. Appl Sci 8(11):2179 (Invited paper)

    Article  Google Scholar 

  90. Bennett CR, Brassard G, Crepeau C, Maurer UM (1995) Generalized privacy amplification. IEEE Inform. Theory 41(6):1915–1923

    Article  Google Scholar 

  91. Islam NT (2018) High-rate, high-dimensional quantum key distribution systems. PhD dissertation, Department of Physics, Duke University

    Chapter  MATH  Google Scholar 

  92. Djordjevic IB, Zhang Y (2015) Entanglement assisted time-energy QKD employing Franson interferometers and cavity quantum electrodynamics (CQED) principles. In: Proceedings of the SPIE photonics west 2015, OPTO: advances in photonics of quantum computing, memory, and communication VIII, p 93770L, 7–12 February 2015, San Francisco, California, United States

    Google Scholar 

  93. Djordjevic IB (2011) Multidimensional pulse-position coded-modulation for deep-space optical communication. IEEE Photon Technol Lett 23(18):1355–1357

    Article  ADS  Google Scholar 

  94. Brougham T, Barnett SM, McCusker KT, Kwiat P, Gauthier D (2013) Security of high-dimensional quantum key distribution protocols using Franson interferometers. J Phys B At Mol Opt Phys 46:104010

    Article  ADS  Google Scholar 

  95. Proakis JG, Manolakis DM (2007) Digital signal processing: principles, algorithms, and applications. Fourth Edition, Pearson Prentice Hall

    Google Scholar 

  96. Hillerkuss D, Winter M, Teschke M, Marculescu A, Li J, Sigurdsson G, Worms K, Ben Ezra S, Narkiss N, Freude W, Leuthold J (2010) Simple all-optical FFT scheme enabling Tbit/s real-time signal processing. Opt Express 18:9324–9340

    Article  ADS  Google Scholar 

  97. Liao Y, Pan W (2011) All-optical OFDM based on arrayed grating waveguides in WDM systems. In: Proceedings of the 2011 international conference on electronics, communications and control (ICECC), pp 707–710

    Google Scholar 

  98. Djordjevic IB, Saleh AH, Küppers F (2014) Design of DPSS based fiber Bragg gratings and their application in all-optical encryption, OCDMA, optical steganography, and orthogonal-division multiplexing. Opt Express 22(9):10882–10897

    Article  ADS  Google Scholar 

  99. Djordjevic IB, Zhang S, Wang T (2016) Optically encrypted multidimensional coded modulation for multi-Pb/s optical transport. In: Proceedings of the IEEE photonics conference 2016, Paper MB3.6, pp 57–58

    Google Scholar 

  100. Dong L, Fortier S (2004) Formulation of time-domain algorithm for fiber Bragg grating simulation and reconstruction. IEEE J Quantum Electron 40(8):1087–1098

    Article  ADS  Google Scholar 

  101. Wu C, Raymer MG (2006) Efficient picosecond pulse shaping by programmable Bragg gratings. IEEE J Quantum Electron 42(9):873–884

    Article  ADS  Google Scholar 

  102. Fernández-Ruiz MR, Li M, Dastmalchi M, Carballar A, LaRochelle S, Azaña J (2013) Picosecond optical signal processing based on transmissive fiber Bragg gratings. Opt Lett 38:1247–1249

    Article  ADS  Google Scholar 

  103. Djordjevic IB (2019) Proposal for slepian-states-based DV- and CV-QKD schemes suitable for implementation in integrated photonics platforms. IEEE Photonics J 11(4):7600312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan B. Djordjevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djordjevic, I.B. (2019). Discrete Variable (DV) QKD. In: Physical-Layer Security and Quantum Key Distribution . Springer, Cham. https://doi.org/10.1007/978-3-030-27565-5_7

Download citation

Publish with us

Policies and ethics