Skip to main content

Conventional Cryptography Fundamentals

  • Chapter
  • First Online:
Physical-Layer Security and Quantum Key Distribution
  • 998 Accesses

Abstract

In this chapter, the conventional cryptography fundamentals are introduced. The chapter starts with basic terminology and cryptographic schemes, including symmetric and asymmetric cryptography, basic ciphers such as substitution and transposition ciphers , and one-time pads . The concepts of secrecy , authentication , and non-repudiation are introduced then, followed by various cryptanalytic attacks such as ciphertext-only, known-plaintext, chosen-plaintext , chosen-ciphertext , and adaptive-chosen-plaintext attacks . In section on information-theoretic approach to cryptography , the concept of perfect security is introduced and compared against the computational security . In the same section, unicity distance is discussed as well as the role of compression in cryptography. After that, one-way functions and one-way hash functions are discussed. The chapter concludes with several relevant practical cryptographic systems including DES and RSA systems as well as Diffie–Hellman public-key distribution .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28:656–715

    Article  MathSciNet  Google Scholar 

  2. Schneier B (2015) Applied cryptography, second edition: protocols, algorithms, and source code in C. Wiley, Indianapolis, IN

    Book  Google Scholar 

  3. Drajic D, Ivanis P (2009) Introduction to information theory and coding, 3rd edn. Akademska Misao, Belgrade, Serbia (in Serbian)

    MATH  Google Scholar 

  4. Haykin S (2001) Communication systems, 4th edn. Wiley, Hamilton Printing Company, Canada

    Google Scholar 

  5. Katz J, Lindell Y (2015) Introduction to modern cryptography, 2nd edn. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  6. Diffie W, Hellman ME (1976) New direction in cryptography. IEEE Trans Inform Theory IT 22:644–654

    Article  MathSciNet  Google Scholar 

  7. Hellman ME (1977) An extension of the Shannon theory approach to cryptography. IEEE Trans Inform Theory IT 23:289–294

    Article  MathSciNet  Google Scholar 

  8. Rivest RL, Shamir A, Adleman L (1983) Cryptographic communications system and method. US Patent 4,405,829

    Google Scholar 

  9. Merkle M (1978) Secure communication over an insecure channel. Comm ACM 21:294–299

    Article  Google Scholar 

  10. McEliece RJ (1978) A public key cryptosystem based on algebraic coding theory. JPL DSN Prog Rep 42(44):114–116

    Google Scholar 

  11. Aumasson J-P (2018) Serious cryptography: a practical introduction to modern encryption. No Starch Press, San Francisco, CA

    MATH  Google Scholar 

  12. Kahn D (1967) The codebreakers: the story of secret writing. Macmillan Publishing Co., New York

    Google Scholar 

  13. Neilsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  14. Van Assche G (2006) Quantum cryptography and secrete-key distillation. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  15. Djordjevic IB (2012) Quantum information processing and quantum error correction: an engineering approach. Elsevier/Academic Press, Amsterdam, Boston

    Google Scholar 

  16. Djordjevic IB (2017) Advanced optical and wireless communications systems. Springer International Publishing, Switzerland

    Google Scholar 

  17. Sebbery J, Pieprzyk J (1989) Cryptography: an introduction to computer security. Prentice Hall, New York

    Google Scholar 

  18. Delfs H, Knebl H (2015) Introduction to cryptography: principles and applications (Information Security and Cryptography), 3rd edn. Springer, Heidelberg, New York

    Google Scholar 

  19. Merckle RC (1979) Secrecy, authentication, and public key systems. PhD dissertation. Stanford University

    Google Scholar 

  20. Merckle RC (1990) One way hash functions and DES. In: Proceedings of Advances in Cryptology-CRYTPO ’89. Springer, pp 428–446

    Google Scholar 

  21. Rivest RL (1991) The MD4 message digest algorithm. In: Proceedings of Advances in Cryptology-CRYTPO ’90. Springer, pp 303–311

    Google Scholar 

  22. Rivest RL (1992) The MD5 message digest algorithm. RFC 1321. https://tools.ietf.org/html/rfc1321

  23. National Institute of Standards and Technology, NIST FIPS PUB 186. Digital Signature Standard. US Department of Commerce (May 1994)

    Google Scholar 

  24. Diffie W, Hellman ME (1979) Privacy and authentication: an introduction to cryptography. Proc IEEE 67(3):397–427

    Article  Google Scholar 

  25. ANSI X3.92, American National Standard for Data Encryption Algorithm (DEA). American National Standards Institute (1981)

    Google Scholar 

  26. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Comm ACM 21(2):120–126

    Article  MathSciNet  Google Scholar 

  27. Feistel H (1973) Cryptography and computer privacy. Sci Am 228(5):15–23

    Article  ADS  Google Scholar 

  28. Feistel H (1974) Block cipher cryptographic system. US Patent 3,798,359

    Google Scholar 

  29. Luby M, Rackoff C (1988) How to construct pseudorandom permutations from pseudorandom functions. SIAM J Comput 17(2):373–386

    Article  MathSciNet  Google Scholar 

  30. National Bureau of Standards (1980) NBS FIPS PUB 81. DES modes of operation. US Department of Commerce

    Google Scholar 

  31. Menezes AJ, van Oorschot PC, Vanstone SA (1997) Handbook of applied cryptography. CRC Press, Boca Raton

    MATH  Google Scholar 

  32. Electronic Frontier Foundation (1998) Cracking DES—Secrets of Encryption Research. Wiretap Politics & Chip Design. Oreilly & Associates Inc. ISBN 1-56592-520-3

    Google Scholar 

  33. Andrews GE (1994) Number theory. Dover Publications, New York

    Google Scholar 

  34. Le Bellac M (2006) A short introduction to quantum information and quantum computation. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  35. Hellman ME (2002) An overview of public key cryptography. IEEE Commun Mag 40(5): 42–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan B. Djordjevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djordjevic, I.B. (2019). Conventional Cryptography Fundamentals. In: Physical-Layer Security and Quantum Key Distribution . Springer, Cham. https://doi.org/10.1007/978-3-030-27565-5_3

Download citation

Publish with us

Policies and ethics