Skip to main content

Hardware/Software Self-adaptation in CPS: The CERBERO Project Approach

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2019)

Abstract

Cyber-Physical Systems (CPS) are interconnected devices, reactive and dynamic to sensed external and internal triggers. The H2020 CERBERO EU Project is developing a design environment composed by modelling, deployment and verification tools for adaptive CPS. This paper focuses on its efficient support for run-time self-adaptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments - (http://www.cerbero-h2020.eu/).

  2. 2.

    Experiments available at: http://youtu.be/a9WIucWfjkU.

References

  1. CERBERO Deliverable D3.4 - CERBERO Modelling of KPI. https://www.cerbero-h2020.eu/wp-content/uploads/2018/12/D3.4.pdf

  2. CERBERO Deliverable D6.8 - Planetary Exploration Demonstrator. https://www.cerbero-h2020.eu/wp-content/uploads/2018/12/D6.8.pdf

  3. Performance API (2019). http://icl.utk.edu/papi/

  4. Bosse, T., et al.: Developing ePartners for human-robot teams in space based on ontologies and formal abstraction hierarchies. J. Agent-Orient. Softw. Eng. 5(4), 366–398 (2017)

    Article  Google Scholar 

  5. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_3

    Chapter  Google Scholar 

  6. Desnos, K., et al.: PiMM: parameterized and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: SAMOS (2013)

    Google Scholar 

  7. Fanni, T., et al.: Multi-grain reconfiguration for advanced adaptivity in cyber-physical systems. In: ReConFig 2018, December 2018

    Google Scholar 

  8. Hartenstein, R.: Coarse grain reconfigurable architecture (embedded tutorial). In: Conference of the Asia and South Pacific Design Automation (2001)

    Google Scholar 

  9. Heulot, J., et al.: SPIDER: a synchronous parameterized and interfaced dataflow-based RTOS for multicore DSPs. In: EDERC (2014)

    Google Scholar 

  10. Kim, K., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100(Special Centennial Issue), 1287–1308 (2012)

    Article  Google Scholar 

  11. Leeuwen, C.J.V., et al.: Model-based architecture optimization for self-adaptive networked signal processing systems. In: SASO (2014)

    Google Scholar 

  12. Lombardo, M., et al.: Power management techniques in an FPGA-based WSN node for high performance applications. In: ReCoSoC (2012)

    Google Scholar 

  13. Macías-Escrivá, F.D., et al.: Self-adaptive systems: a survey of current approaches, research challenges and applications. Expert Syst. Appl. 40(18), 7267–7279 (2013)

    Article  Google Scholar 

  14. Madroñal, D., Fanni, T.: Run-time performance monitoring of hardware accelerators: POSTER. In: CF (2019)

    Google Scholar 

  15. Madroñal, D., et al.: Automatic instrumentation of dataflow applications using PAPI. In: CF (2018)

    Google Scholar 

  16. Masin, M., et al.: Cross-layer design of reconfigurable cyber-physical systems. In: DATE, March 2017

    Google Scholar 

  17. Narizzano, M., Pulina, L., Tacchella, A., Vuotto, S.: Consistency of property specification patterns with boolean and constrained numerical signals. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 383–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_26

    Chapter  Google Scholar 

  18. Palumbo, F., et al.: Power-awarness in coarse-grained reconfigurable multi-functional architectures: a dataflow based strategy. J. Signal Process. Syst. 87(1), 81–106 (2017). https://doi.org/10.1007/s11265-016-1106-9

    Article  Google Scholar 

  19. Palumbo, F., et al.: CERBERO: cross-layer model-based framework for multi-objective design of reconfigurable systems in uncertain hybrid environments. In: CF (2019)

    Google Scholar 

  20. Pelcat, M., et al.: PREESM: a dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In: EDERC (2014)

    Google Scholar 

  21. Pelcat, M., et al.: Reproducible evaluation of system efficiency with a model of architecture: from theory to practice. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 37, 2050–2063 (2017)

    Article  Google Scholar 

  22. Ren, R., et al.: Energy estimation models for video decoders: reconfigurable video coding-CAL case-study. IET Comput. Digit. Tech. 9(1), 3–15 (2014)

    Article  Google Scholar 

  23. Rodríguez, A., et al.: FPGA-based high-performance embedded systems for adaptive edge computing in cyber-physical systems: the ARTICo3 framework. Sensors 18(6), 1877 (2018). https://doi.org/10.3390/s18061877

    Article  Google Scholar 

  24. Salehie, M., Tahvildari, L.: Towards a goal-driven approach to action selection in self-adaptive software. Softw. Pract. Exper. 42(2), 211–233 (2012)

    Article  Google Scholar 

  25. Suriano, L., et al.: A unified hardware/software monitoring method for reconfigurable computing architectures using PAPI. In: ReCoSoC (2018)

    Google Scholar 

  26. Zadorojniy, A., et al.: Algorithms for finding maximum diversity of design variables in multi-objective optimization. In: CSER (2012)

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732105. The authors would like to thank the Spanish Ministry of Education, Culture and Sport for its support under the FPU grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Fanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palumbo, F. et al. (2019). Hardware/Software Self-adaptation in CPS: The CERBERO Project Approach. In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2019. Lecture Notes in Computer Science(), vol 11733. Springer, Cham. https://doi.org/10.1007/978-3-030-27562-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27562-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27561-7

  • Online ISBN: 978-3-030-27562-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics