Experimental Evaluation of Probabilistic Execution-Time Modeling and Analysis Methods for SDF Applications on MPSoCs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11733)


Early validation of software running on multi-processor platforms is fundamental to guarantee that real-time constraints will be fully met. In the domain of timing analysis probabilistic simulation techniques tackle the problem of scalability. However, creation of probabilistic SystemC models remains a difficult task and is not well supported for multi-processors systems. In this paper we present a modeling workflow that will then be used for an experimental evaluation of probabilistic simulation techniques. For the modeling process a measurement-based approach is proposed to favor the creation of trustful models. The evaluated probabilistic simulation techniques demonstrate good potential to deliver fast yet accurate estimations for multi-processor systems.


Statistical Model Checking Probabilistic SystemC model Multi processor 


  1. 1.
    Association, I.S., et al.: IEEE Standard for Standard Systemc Language Reference Manual. IEEE Computer Society, New York (2012)Google Scholar
  2. 2.
    Basu, A., et al.: Rigorous component-based system design using the bip framework. IEEE Softw. 28(3), 41–48 (2011). Scholar
  3. 3.
    Cazorla, F.J., et al.: Proxima: improving measurement-based timing analysis through randomisation and probabilistic analysis. In: 2016 Euromicro Conference on Digital System Design (DSD), pp. 276–285. IEEE (2016)Google Scholar
  4. 4.
    Cazorla, F.J., et al.: PROARTIS: probabilistically analyzable real-time systems. ACM Trans. Embed. Comput. Syst. (TECS) 12(2s), 94 (2013)Google Scholar
  5. 5.
    David, A., et al.: Statistical model checking for networks of priced timed automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011). Scholar
  6. 6.
  7. 7.
    Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical model checking - plasma. In: Flanagan, C., König, B. (eds.) TACAS 2012. Lecture Notes in Computer Science, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Kumar, A.: Analysis, design and management of multimedia multi-processor systems. Ph.D. thesis, Eindhoven University of Technology (2009)Google Scholar
  9. 9.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). Scholar
  10. 10.
    Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  11. 11.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  12. 12.
    Ngo, V.C., Legay, A., Quilbeuf, J.: Statistical model checking for SystemC models. In: 2016 IEEE 17th International Symposium on High Assurance Systems Engineering, pp. 197–204 (2016)Google Scholar
  13. 13.
    Nouri, A., Bozga, M., Moinos, A., Legay, A., Bensalem, S.: Building faithful high-level models and performance evaluation of Manycore embedded systems. In: ACM/IEEE International Conference on Formal Methods and Models for Codesign (2014)Google Scholar
  14. 14.
    Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A.: Statistical model checking QoS properties of systems with SBIP. Int. J. Softw. Tools Technol. Transfer 17(2), 171–185 (2014)CrossRefGoogle Scholar
  15. 15.
    Schlaak, C., Fakih, M., Stemmer, R.: Power and execution time measurement methodology for SDF applications on FPGA-based MPSoCs. arXiv preprint arXiv:1701.03709 (2017)
  16. 16.
    Stemmer, R., Schlender, H., Fakih, M., Grüttner, K., Nebel, W.: Probabilistic state-based RT-analysis of SDFGs on MPSoCs with shared memory communication. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), March 2019Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of OldenburgOldenburgGermany
  2. 2.University of Nantes, IETR, UMR CNRS 6164NantesFrance
  3. 3.OFFIS e.V.OldenburgGermany

Personalised recommendations