Abstract
We consider the usage of parallel-in-time algorithms of the Parareal and multigrid-reduction-in-time (MGRIT) methodologies for the parallel-in-time solution of the eddy current problem. Via application of these methods to a two-dimensional model problem for a coaxial cable model, we show that a significant speedup can be achieved in comparison to sequential time stepping.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Commun. Assoc. Comput. Mach. 7, 731–733 (1964)
Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition, pp. 69–113. Springer, Heidelberg (2015)
Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDEs. C. R. Acad. Sci. 332, 661–668 (2001)
Falgout, R.D., Friedhoff, S., Kolev, T. V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36(6), C635–C661 (2014)
Meeker, D.C.: Finite Element Method Magnetics, Version 4.2 (28 Feb 2018 Build). http://www.femm.info
Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)
Heise, B.: Analysis of a fully discrete finite element method for a nonlinear magnetic field problem. SIAM J. Numer. Anal. 31(3), 745–759 (1994)
Schmidt, K., Sterz, O., Hiptmair, R.: Estimating the eddy-current modeling error. IEEE Trans. Magn. 44(6), 686–689 (2008)
Emson, C.R.I., Trowbridge, C.W.: Transient 3d eddy currents using modified magnetic vector potentials and magnetic scalar potentials. IEEE Trans. Magn. 24(1), 86–89 (1988)
Nicolet, A., Delincé, F.: Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans. Magn. 32(3), 1405–1408 (1996)
Ries, M., Trottenberg, U.: MGR-Ein blitzschneller elliptischer Löser. Preprint 277 SFB 72. Universität Bonn, Bonn (1979)
Ries, M., Trottenberg, U., Winter, G.: A note on MGR methods. Linear Algebra Appl. 49, 1–26 (1983)
Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)
Gander, M.J., Kulchytska-Ruchka, I., Niyonzima, I., Schöps, S.: A New Parareal Algorithm for Problems with Discontinuous Sources. Submitted to SISC, arXiv: 1803.05503 (2018)
Acknowledgements
The work is supported by the Excellence Initiative of the German Federal and State Governments, the Graduate School of Computational Engineering at TU Darmstadt, and the BMBF in the framework of project PASIROM (grants 05M18RDA and 05M18PXB).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Friedhoff, S., Hahne, J., Kulchytska-Ruchka, I., Schöps, S. (2019). Exploring Parallel-in-Time Approaches for Eddy Current Problems. In: Faragó, I., Izsák, F., Simon, P. (eds) Progress in Industrial Mathematics at ECMI 2018. Mathematics in Industry(), vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-27550-1_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-27550-1_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27549-5
Online ISBN: 978-3-030-27550-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)