Skip to main content

Exploring Parallel-in-Time Approaches for Eddy Current Problems

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2018

Part of the book series: Mathematics in Industry ((TECMI,volume 30))

Abstract

We consider the usage of parallel-in-time algorithms of the Parareal and multigrid-reduction-in-time (MGRIT) methodologies for the parallel-in-time solution of the eddy current problem. Via application of these methods to a two-dimensional model problem for a coaxial cable model, we show that a significant speedup can be achieved in comparison to sequential time stepping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Commun. Assoc. Comput. Mach. 7, 731–733 (1964)

    MathSciNet  MATH  Google Scholar 

  2. Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition, pp. 69–113. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  3. Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDEs. C. R. Acad. Sci. 332, 661–668 (2001)

    Article  Google Scholar 

  4. Falgout, R.D., Friedhoff, S., Kolev, T. V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36(6), C635–C661 (2014)

    Article  MathSciNet  Google Scholar 

  5. Meeker, D.C.: Finite Element Method Magnetics, Version 4.2 (28 Feb 2018 Build). http://www.femm.info

  6. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  7. Heise, B.: Analysis of a fully discrete finite element method for a nonlinear magnetic field problem. SIAM J. Numer. Anal. 31(3), 745–759 (1994)

    Article  MathSciNet  Google Scholar 

  8. Schmidt, K., Sterz, O., Hiptmair, R.: Estimating the eddy-current modeling error. IEEE Trans. Magn. 44(6), 686–689 (2008)

    Article  Google Scholar 

  9. Emson, C.R.I., Trowbridge, C.W.: Transient 3d eddy currents using modified magnetic vector potentials and magnetic scalar potentials. IEEE Trans. Magn. 24(1), 86–89 (1988)

    Article  Google Scholar 

  10. Nicolet, A., Delincé, F.: Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans. Magn. 32(3), 1405–1408 (1996)

    Article  Google Scholar 

  11. Ries, M., Trottenberg, U.: MGR-Ein blitzschneller elliptischer Löser. Preprint 277 SFB 72. Universität Bonn, Bonn (1979)

    Google Scholar 

  12. Ries, M., Trottenberg, U., Winter, G.: A note on MGR methods. Linear Algebra Appl. 49, 1–26 (1983)

    Article  MathSciNet  Google Scholar 

  13. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MathSciNet  Google Scholar 

  14. Gander, M.J., Kulchytska-Ruchka, I., Niyonzima, I., Schöps, S.: A New Parareal Algorithm for Problems with Discontinuous Sources. Submitted to SISC, arXiv: 1803.05503 (2018)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the Excellence Initiative of the German Federal and State Governments, the Graduate School of Computational Engineering at TU Darmstadt, and the BMBF in the framework of project PASIROM (grants 05M18RDA and 05M18PXB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Friedhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friedhoff, S., Hahne, J., Kulchytska-Ruchka, I., Schöps, S. (2019). Exploring Parallel-in-Time Approaches for Eddy Current Problems. In: Faragó, I., Izsák, F., Simon, P. (eds) Progress in Industrial Mathematics at ECMI 2018. Mathematics in Industry(), vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-27550-1_47

Download citation

Publish with us

Policies and ethics